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The duality in the affine actions on trees

Ievgen Bondarenko

Every action on a tree given by a (finite) automaton has an associated dual action given by
the dual automaton. In this talk I will consider the affine groups of subrings of a global function
field, construct their actions on a regular tree, and describe the dual action. In particular, this
gives a natural family of bireversible automata and square complexes with interesting properties
coming from the affine groups of global function fields. The talk is based on a joint work in
progress with Dmytro Savchuk.
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On the classification of the serial principal posets

Vitaliy M. Bondarenko, Maryna Styopochkina

A finite poset 𝑆 is called principal if the quadratic Tits form 𝑞𝑆(𝑧) := 𝑧20 +
∑︀

𝑖∈𝑆 𝑧
2
𝑖 +∑︀

𝑖<𝑗,𝑖,𝑗∈𝑆 𝑧𝑖𝑧𝑗 − 𝑧0
∑︀

𝑖∈𝑆 𝑧𝑖 of 𝑆 is non-negative and Ker 𝑞𝑆(𝑧) := {𝑡 | 𝑞𝑆(𝑡) = 0} is an infinite
cyclic group, i.e. Ker 𝑞𝑆(𝑧) = 𝑡0Z for some 𝑡0 ̸= 0. We call a principal poset 𝑆 serial if for any
𝑚 ∈ N, there is a principal poset 𝑆(𝑚) ⊃ 𝑆 such that |𝑆(𝑚) ∖ 𝑆| = 𝑚.
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By a subposet we always mean a full subposet. A poset 𝑆 is called a sum of subposets 𝐴
and 𝐵 if 𝑆 = 𝐴 ∪𝐵 and 𝐴 ∩𝐵 = ∅. If any two elements 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 are incomparable,
the sum is called direct. A sum 𝑆 = 𝐴 + 𝐵 with 𝐴,𝐵 ̸= ∅ is said to be left (resp. right) if
𝑎 < 𝑏 (resp. 𝑏 < 𝑎) for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and there is no 𝑎′ ∈ 𝐴, 𝑏′ ∈ 𝐵 satisfying 𝑎′ > 𝑏′ (resp.
𝑏′ > 𝑎′). Both left and right sums are called one-sided. A sum 𝑆 = 𝐴+𝐵 is called two-sided if
𝑎 < 𝑏 and 𝑎′ > 𝑏′ for some 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵. Finally, a one-sided or two-sided sum 𝑆 = 𝐴+𝐵
is called minimax if 𝑥 < 𝑦 with 𝑥 and 𝑦 belonging to different summands implies that 𝑥 is
minimal and 𝑦 maximal in 𝑆.

We can now formulate our main theorems.

Theorem 1. A poset 𝑆 is serial principal if and only if one of the following condition holds:
(I) 𝑆 is a direct sum of a chain of length 𝑘 ≥ 0, and a semichain of length 𝑠 ≥ 2 and 2-length

2;
(Il) 𝑆 is a direct sum of a semichain of length 𝑘 ≥ 1 and 2-length 1, and a semichain of

length 𝑠 ≥ 1 and 2-length 1, where 𝑘 ≤ 𝑠;
(III) 𝑆 is a left minimax sum of a chain of length 𝑘 ≥ 1, and a semichain of length 𝑠 ≥ 2

and 2-length 1 with the only maximal element;
(IV) 𝑆 is a left minimax sum of a semichain of length 𝑘 ≥ 2 and 2-length 1 with the only

minimal element, and a chain of length 𝑠 ≥ 1;
(V) 𝑆 is a two-sided minimax sum of a chain of length 𝑘 ≥ 2 and a chain of length 𝑠 ≥ 3,

where 𝑘 ≤ 𝑠.
Moreover, all these posets are pairwise non-isomorphic.

Theorem 2. Any principal poset of order 𝑛 > 8 is serial.

A class of principal posets of order 𝑛 = 6, 7, 8 (which in our terminology means the non-serial
ones) were written by G. Marczak, D. Simson and K. Zaja̧c with the help of programming in
Maple and Python in the paper [1] and the preprint [2].
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