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Among the quadratic forms, playing an important role in modern mathematics, the Tits quadratic
forms should be distinguished. Such quadratic forms were first introduced by P. Gabriel for any quiver
in connection with the study of representations of quivers (also introduced by him). P. Gabriel proved
that the connected quivers with positive Tits form coincide with the Dynkin quivers. This quadratic
form is naturally generalized to a poset. The posets with positive quadratic Tits form (analogs of the
Dynkin diagrams) were classified by the authors together with the P-critical posets (the smallest posets
with non-positive quadratic Tits form). The quadratic Tits form of a P-critical poset is non-negative
and corank of its symmetric matriz is 1. In this paper we study all posets with such two properties,
which are called principal, related to equivalence of their quadratic Tits forms and those of Fuclidean
diagrams. In particular, one problem posted in 2014 is solved.

Key Words: positive and non-negative quadratic form, quadratic Tits form, P-critical poset, pri-
ncipal poset, Dynkin diagram, Fuclidean diagram
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1 Introduction of vertices and arrows of (), respectively, then
the quadratic form qg is defined by the following

In 1972 P. Gabriel [1] introduced an integer equality:

quadratic form qg for any finite quiver (directed

graph) @, called by him the quadratic Tits form qQ = qo(z) := Z Z’LQ _ Zzizja

of the quiver Q. If Qg and ()1 denote the sets i€Qo i

© B. M. Bongapenko, M. B. Crronoukina, 2018



Bicnux Kuiscvkozo ywisepcumemy
Cepis: Pizuro-mamemamusni HayKy

where ¢ — j runs through the set Q1. Note that, by
definition, the quadratic Tits form ¢gg of an undi-
rected graph (for simplicity, a graph) G is that of
a quiver G’, which is obtained with the help of
selecting an orientation € on the edges of G (up
to the renumbering of the variables, the quadratic
form g¢ does not depend on choice of €).

The above quadratic form was introduced
by P. Gabriel in connection with the study of
representations of quivers (also introduced by
him). He proved that a connected quiver is of fi-
nite representation type over a field (i.e. has, up
to equivalence, only finitely many indecomposable
representations) if and only if it is a Dynkin quiver,
i.e. the corresponding graph is a (simply faced)
Dynkin diagram (see Section 5).

If we talk directly about quadratic forms, from
the results of [1] it follows that the connected qui-
vers with positive quadratic Tits form coincide wi-
th the Dynkin quivers (“positive” means “positive
definite”).

The above quadratic form gg is naturally ge-
neralized (in an ideal sense) to a finite partially
ordered set (poset) S # 0:

gs =qs(2) = 0+Y A+ D zz—AY

ieS i<j,ijeS i€s

(for the first time it was written in [2| in connecti-
on with the study of posets of finite representati-
on type). The quadratic form g¢g is called the
quadratic Tits form of the poset S. The problem
of classifying all the posets with positive quadratic
Tits form were solved by the authors in [3]. These
posets are analogs of the Dynkin diagrams.

In [3]| the authors also introduced the notion
of P-critical poset and classified such posets up to
isomorphism (see the list of posets in Section 6).
Namely, a poset S is said to be P-critical if its
quadratic Tits form is not positive, but the Tits
form of any proper subposet of S is positive. So the
quadratic Tits form gg(z) is positive if and only if
the poset S does not contain (as a subposet) a
P-critical one.

Below by “non-negative quadratic form” we
meant “non-negative definite quadratic form” (i.e.
the form takes only non-negative values).

Theorem 1. Let S be a P-critical poset. Then
(1) the quadratic Tits form qs(z) is non-
negative;
(2) Ker gs(z) := {t € Z¥H1 | g5(t) = 0} is an
infinite cyclic group, i.e. Ker qs(z) = t'Z for some
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t' # 0 (equivalently, the symmetric matriz of qs(z)
has corank 1).

Indeed, by Theorem 2 and Proposition 19 |[3]
the quadratic Tits form gg(z) is Z-equivalent to
the quadratic Tits form of some critical Kleiner’s
poset; and the theorem it follows from the well-
known properties of Kleiner’s posets (see, e.g., [4]).

Thus, the P-critical posets coincides with the
minimal posets (relative to full inclusion) of the
set P12 of all posets, satysfying conditions (1) and
(2). The posets from Pz are called principal [5].

In this paper we study principal posets related
to equivalence of their quadratic Tits forms and
those of graphs. In particular, one problem posted
in [6] is solved.

2 Main result

By [5, Proposition 9|, for any principal poset J
there exists a (simply faced) Euclidean diagram (in
other words, extended Dynkin diagram; see Secti-
onb) DJ € {As,s > 3,D,,n > 4,Eg, E7, Eg}, uni-
quely determined by J, such that the symmetric
matrices of the quadratic Tits forms of J and DJ
(called in [5] the symmetric Gram matrices) are
Z-congruent. DJ is called the Coxeter—FEuclidean
type of J.

In this paper we prove the following theorem,
which is formulated in the term of equivalence of
quadratic forms.

Theorem 2. Let S be a principal poset.
Then there exists an Euclidean diagram FE(S),
which is not a cycle (i.e. E(S) # A), such that
the quadratic Tits forms qs(z) and qgs)(z) are
Z-equivalent.

This theorem strengthens the indicated result
from [5]. In combination with the uniqueness
E(S) := DS with respect to S, we have a solution
of Problem 1.6 [6].

Our proof is general (does not contain specific
calculations) and is based on the methods of mini-
max equivalence of posets and stable equivalence
of quadratic forms.

3 Preliminary

3.1. Minimax equivalence of posets. The
notiion of (min, maz)-equivalence of posets was
introduced by the first author in |7]. In details the
properties of this equivalence were studied in [3].
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Since some time we have been used the term mi-
nimaz equivalence.

In this subsection we remember some definiti-
ons and results from [3].

Let S be a (finite) poset. For a minimal
(respectively, maximal) element a of S, denote by
T=25) (respectively, T = Sy ) the following poset:
T = S as usual sets, T\ a = S \ a as posets, the
element @ is maximal (resp. minimal) in 7', and
a is comparable with x in T if and only if they
are incomparable in S. A poset T is called mini-
max equivalent to a poset S, if there are posets
S1,...,8p (p = 0) such that, if we put S = Sp and
T = Spy1, then, for every ¢ = 0,1,...,p, either
Siv1 = (Si)l, or Sip1 = (Si)-

The notion of minimax equivalence can be
naturally continued to the notion of minimaz
isomorphism: posets S and S’ are minimax
isomorphic if there exists a poset T', which is mi-
nimax equivalent to S and isomorphic to S’.

The definition of posets of the form T = St
(respectively, T = Si) can be extended to posets
of the form T = S’Il (respectively, T' = Sj), where
A is a lower (respectively, an upper) subposet
of S, ie. x € A whenever © < y (respectively,
x >y)and y € A. Namely, T = SL (
T = 5}4) is defined as follows: T" = § as usual
sets, partial orders on A and S\ A are the same
as before, but comparability and incomparability
between elements of z € A and y € S\ A are
interchanged and the new comparability can only
be of the form = > y (respectively, = < y).

We write S;TB instead of (SL)%. S}B instead
of (S)%, etc. Obviously, ST, = 5, sS4, = S,
Sh = St
and B = {b} are one-element posets, we identify
A and B with a and b.

A poset T is called dual to a poset S and is
denoted by S°P if T' = S as usual sets and x < y in
T if and only if x > y in S. From the above definiti-
ons it follows the next equality: (Sj)(’p = (SOP)LOP.

It is easy to show that Sg (respectively, Sj)
and S is minimax equivalent. Since Sg = Sg\ B
it is sufficient to consider only the case, when the
subspace A is upper. Let A; be the set of all mi-
nimal elements of A and (inductively) A;,¢ > 1,
the set of all minimal elements of A\ (U;;IIAJ-)
(obviously, U/_; A; = A, where r is the largest i
such that A; # @); the writing h(z) = i for an
element x € S will be meant that x € S;. From

respectively,

In the special case, when A = {a}
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this notation it follows that if |A| = m, than the
elements of A can be numerated in such a way, say
.y Qm, that h(a) < h(az) < ... < h(am).
Consequently, SI‘ = 52122_']_'27”, i.e. S, is minimax
equivalent to S, as claimed.

The main motivation for introducing the
notion of minimax equivalence is the following
theorem.

ai, az, . .

Theorem 3. The Tits quadratic forms of mini-
max equivalent posets are Z-equivalent.

The theorem follows from the next propositi-
on.

Proposition 1. Let S be a poset and let T = SL

or T = Sj. Then qs(z) = qr(2'), where z[ =
20 = Doged Zas 2y = —Zz for x € A and 2, = 2z
forx ¢ A.

Corollary 1. Let S and T be the same as in
Proposition 1, and let © ¢ A. Then the quadratic
Tits form of T'\ = is positive if so is the quadratic

Tits form of S\ x.

3.2. Stable equivalence of quadratic
forms. Let f(z) = f(z1, 22, ..., 2n) be a quadratic
form of n variables over the field R of real numbers
with the symmetric matrix

F=M(f):=
! fin— fin
fu > : 2 : 5
Le o fy fana fn
fl,;—l f2,121—1 fn—l,n—l fn—21,n
flT" fQTn f'n—21,n fnn

Then the quadratic form can be written in the
following matrix form:

f(2) =200 fuzd + 2 e figzizs =

<1

<2

»2n) M(f) ZM(f)=T,

= (21,22, .-
Zn

where the letter 7' means matrix transposition.
Note that we follow the paper [9], and the

equality f(z) = zM(f)z" is not entirely traditi-

onal (as a final one), since a replacement is usually
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done, say Z := (21, 22, . . ., zn)T (see [8, Ch. 5,81]),
and then f(2) = ZTM(f)Z.

If in the quadratic form f(z) we perfom
a linear transformation z yA with y
(y1,Y2,--.,Yn) and an nonsingular n x n matrix
A, then we get the quadratic form

fly) = (A F(ATy") =y (AFAT) y".

From this it follows, in particular, that M (f) =
AM(f)AT.

A quadratic form f(z) = f(z1,...,2,) is said
to be decomposable if there is a proper subset of
S C N := {1,2,...,n} such that f;; = 0 for
i€ S,7€ N\Sandforie N\S,j€S;otherwise,
the form is called indecomposable.

We now recall some definitions given in [9].

An n x n matrix A is called s-stable, where
s€{1,2,...,n}, if its s-th column coinsides with
the s-th column of the identity n x n matrix F.
A linear nonsingular transformation z = yA (see
above) is called s-stable if so is the matrix A.

Two quadratic forms f = f(z) and g¢
g(y) are called s-stable equivalent if there exists
a nonsingular linear transformation z = yA being
s-stable that carries f(z) into g(y). If f = f(z)
and g = ¢(y) are integer quadratic forms, then
the term “s-stable Z-equivalent” means that the
s-stable matrix A is integer and invertible (as a
matrix over 7).

We now consider the general case of unit
integer positive quadratic forms:

n

Sy Zn) = sz + Z fijziz;,

i=1 i<j

f(z) = f(z,..

where n > 1; from positivity it follows that f;; €
{0,1, =1} for all 4, j. The set of all such quadratic
forms is denoted by Z .

Theorem 4 (|9], Theorem 3). For any inde-
composable quadratic form f = f(z) € ZT and
s € {1,...,n} there exists an s-stably Z-equivalent
quadratic form which is the Tits quadratic form of
a certain Dynkin diagram.

Note that a similar statement, but without
additional restrictions on equivalence, has long
been known [10].

4 Proof of Theorem 2

We will call a poset positive (respectively, non-
negative) if so is its quadratic Tits form.
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Let S be a principal poset of order n > 1.

Then there is a non-zero integer vector ¢t =
(ti)iesuo such that ggs(t) = 0. Fix t; # 0 with
d € S and consider the subposet Sy := S\ d,
which is positive by the definition of principal
poset. Put A := {z € S|z < d} and B := {z €
S|z > d}. Then the poset Sy := S}B is a poset
with “isolated” element d (in the sense that it is
incomparable with any other element).

By Theorem 3 the poset S; is non-negative
(and even principal by Proposition 1) and by
Corollaries 1 the poset Sgy := Sy \ d is positive.
Therefore, it suffices to prove the theorem for the

poset Sy.
We assume that the elements of S are
numbered by the numbers 1,2,...,n in such a

way that n = d, and for the partial order relati-
on on S use (to avoid ambiguity) the symbol <
instead of <. Put M := MIgs,(z0,21,---,2n)]
(the symmetric matrix of the quadratic Tits form
of Sg) and N Mlgs,, (20, 21, - .-, 2n—1)] (the
symmetric matrix of the Tits quadratic form of
Sqo); the rows and columns of the both matrices
are numbered by 0,1,... in a natural manner (in

. . . N | 0T
increasing order). Obviously, M = ST )

where v = (—%,0, ..., 0).
By Theorem 4 for S = Sy9 and s = 0 there is

a 0-stable matrix

=

with Agg to be an (n—1)x (n—1) matrix (then Ao
is an 1 x n — 1 one) such that ANAT = Mgp(z)]
for some Dynkin diagram D (the vertices of
which are numbered by 0,1,...n — 1). Then, for

< 61 (1] ), we have (taking into account that

vAT = v): AMAT = (M lap()] | v* ) e

1 Ap
0 Ay

A=

v 1

AMA" is the symmetric matrix of the quadratic
Tits form of the graph D that is obtained from
the Dynkin diagram D by adding the single new
vertex n and the single new edge (0,n). Obviously,
the (connected) graph D is a tree (because so is
the diagram D).

Thus, the quadratic Tits forms gg(z) of the
poset and gg(z) of the tree D are Z-equivalent.
Since ¢p(2) is non-negative and is not positive
(because so is gs(z) with S to be principal), the
graph D is an extended Dynkin diagram (see [11]).
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5 Dynkin and Euclidean diagrams

In this section, for reader’s convenience, we provi-
de the list of all simply faced Dynkin diagrams
— A, (n > 1 vertices), D, (n > 4 vertices),

Simply faced Dynkin diagrams

A

Eg

Eg

2018, 4

Eg, E7, Eg (respectively, 6, 7, 8 vertices), and the
list of all simply faced Euclidean (extended
Dynkin) diagrams — A, (n + 1 > 3 vertices), D,
(n+1 > 5 vertices), Eg, E7, Es (respectively, 7, 8,

9 vertices).
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6 The table of the P-critical posets

We follow the paper [3]. The P-critical posets
are written up to isomorphism and dyality; their
number is 75: PCy, PCs, ..., PCt;. Self-dual
posets are marked (in the upper right corners)

Series: Physics & Mathematics

by sd. If we add all the posets dual to unmarked
ones, we obtain the classification of P-critical
posets up to isomorphism; their number is 132:
PCy, for k = 1,2,...,75 and PCS® for s #
1,2,4,14,23,29, 31, 34, 35, 37,42, 45, 52, 54,64, 66,
70, 75.

i |d o] 4]
ARk IJ Hﬂ ﬂ
AL
HVIRITATAY
PILITAE IR
L A ma |
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37 38 39 40 41 42 sd

—
n
N
—~

43 44 45 sd |46 47 48

S
N
g
.
<

49 50 51 52 s

S

53 54 sd

.
e
.
.

55 /I/J 56 /VA 57 58 /XJ 59 60
61 62 63 64 sd |65 66 sd
67 68 69 70 sd |71 72
73 74 75 sd
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