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Abstract. Rainfed rice cultivation in monsoonal tropical areas of Java, Indonesia, 
is challenged by nutrient deficiencies, unpredictable rainfall amounts, and limited 
agricultural investment, leading to fluctuating yields. The purpose of this study was 
to develop a precise rice yield prediction model using machine learning tailored 
to specific toposequences in Central Java. A combination of survey-based field and 
laboratory methods was employed, integrating climate, soil, socio-economic, and 
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INTRODUCTION
Rainfed rice production in monsoonal tropical envi-
ronments continues to be a crucial element of food 
systems in many developing regions. These systems 
are typified by seasonal rainfall patterns, limited irri-
gation infrastructure, nutrient-depleted soils, and so-
cio-economic challenges. The productivity of rainfed 
rice fields is constrained by environmental variability, 
soil degradation, and the inability of smallholder farm-
ers to adopt efficient management strategies. These 
challenges result in fluctuating and often suboptimal 
yields, which limit long-term food security and eco-
nomic resilience in rural areas. As global demand for 
rice continues to rise and climate patterns shift un-
predictably, the development of accurate, site-specific 
predictive models for rice yields is vital to inform agri-
cultural planning and optimise input allocation in such 
high-risk production systems.

Machine learning  (ML) has gained popularity in 
agricultural modelling due to its ability to manage 
complex nonlinear interactions between diverse in-
put data. J.  Zhang  et al.  (2023) developed a hybrid 
ML model combining climatic and soil factors for 
smallholder farms in Southeast Asia and reported a 
significant increase in prediction accuracy when so-
cio-environmental interactions were considered. Anal-
ogously, N.  Din  et al.  (2024) employed convolutional 
neural networks for rice yield forecasting across South 
Asia, demonstrating that spatial-temporal data inte-
gration markedly enhanced model robustness. P. Vel-
murugan et al. (2023) introduced a fuzzy enumeration 
technique in big data environments for agricultural 
forecasting and emphasised the predictive advantage 
of including farmer demographics and cropping pat-
terns. D. Paudel et al. (2021) proposed large-scale ML 
frameworks for European agricultural systems, high-
lighting the scalability of data-driven models while 
cautioning that prediction accuracy declines without 
site-specific calibration. S. Liu et al.  (2017) compared 
various ML methods and concluded that Bayesian 

Neural Networks (BNN) outperform conventional re-
gression models in handling uncertainty and sparse 
datasets widespread in rainfed regions.

J. Qian et al. (2025) examined the effects of declining 
rainfall suitability on paddy production in tropical mon-
soon climates, asserting the need for adaptive model-
ling that accounts for regional climate vulnerabilities. 
In a pixel-scale study, S. Jeong et al. (2022) applied deep 
learning models to rice yield prediction using satellite 
imagery, concluding that predictive power increased 
substantially when incorporating slope, elevation, and 
localised agroecological variables. J. Pant et al.  (2021) 
emphasised the significance of non-agronomic inputs, 
such as education level and access to improved seed 
varieties, in boosting prediction accuracy in rainfed rice 
fields. T. Tu  et al.  (2023) further demonstrated that in 
highland paddy systems, land slope and contour sig-
nificantly influenced yields, and concluded that pre-
dictive models must be tailored to local topographic 
and management realities. Although these studies have 
contributed to advancements in ML-based crop yield 
forecasting, gaps persist in understanding how loca-
tion-specific topographical characteristics, particularly 
in tropical rainfed zones such as Central Java interact 
with agronomic and socio-economic variables to affect 
model performance. Prior research has tended to focus 
either on climate or soil characteristics alone, without a 
holistic integration of diverse influencing factors within 
a localised, elevation-specific context.

The purpose of this study was to construct a rice 
yield prediction model for rainfed agricultural systems 
in Central Java using a Bayesian Neural Network (BNN) 
integrated with Pareto analysis, with the aim of identi-
fying key determinants of yield across multiple moun-
tain toposequences classified by elevation.

MATERIALS AND METHODS
Study area. Six mountain toposequences were 
the subject of the study in Central Java, Indonesia,  

land management variables from 87 targeted sampling points. Machine learning analysis using Bayesian Neural 
Networks (BNN) demonstrated moderate accuracy with R2  =  0.840 and RMSE  =  0.442 overall, but accuracy 
improved significantly when models were adjusted to elevation-specific categories, achieving R2 values up 
to 0.999. Lowland paddy field predictions were most influenced by available phosphorus (P), while rainfall, 
gender, education, and seed variety were key factors in medium-altitude zones; slope, available P, gender, and 
cropping patterns were dominant in highland areas. Pareto analysis supported the identification of these key 
yield determinants in each toposequence. The integration of BNN and Pareto approaches enabled the creation 
of a high-precision, location-specific yield prediction model. This work demonstrated that tailoring machine 
learning models to elevation-based agroecological zones enhances their performance and practical application. 
The findings are particularly valuable for agricultural stakeholders including policymakers, extension services, 
and farmers, who can leverage these predictive insights to optimise rainfed rice management practices and 
improve productivity under variable climatic conditions

Keywords: agricultural sustainability; Bayesian Neural Network (BNN); food security; Pareto analysis; precision 
agriculture
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including the eastern slopes of Mount Slamet 
(7°12’19.0”S  – 7°17’07.1”S  &  109°17’37.2”E  – 
109°26’11.4”E), southwest of Mount Sindoro 
(7°22’25.8”S  – 7°29’13.1”S  &  109°47’21.4”E  – 
109°53’34.3”E), south of Mount Sumbing (7°26’09.6”S – 
7°37’16.0”S  &  110°02’59.0”E  – 110°08’04.3”E), 
northwest of Mount Merbabu (7°20’48.0”S  – 
7°26’05.2”S  &  110°13’02.5”E  – 110°20’38.7”E), 
southwest of Mount Merapi (7°37’08.0”S  – 
7°39’34.7”S  &  110°18’12.0”E  – 110°20’08.0”E), 
and south of Mount Lawu (7°46’6.3”S  – 
7°53’19.2”S  &  111°9’27.3”E – 111°13’34.9”E) (Fig.  1). 
The gradient of the land topography was considered 

during the sampling procedure. A total of 57 locations 
were sampled with a gradient of 0-8%, 21 locations with 
a gradient of 8-15%, and 9 locations with a gradient of 
15-25%. Additionally, topography was also considered 
for the analysis. There are 34 locations with an altitude 
of under 400 m above sea level, 33 locations with an 
altitude of 400-700 m above sea level, and 20 locations 
with an altitude of over 700  m above sea level. The 
survey used soil samples to identify their composition, 
as well as interviews to learn about land management 
practices and farmers’ socio-economic circumstances. 
The average yield from rainfed rice crops at the re-
search site was 2.12 tonnes ha-1.

Figure 1. Research Site Sampling
Source: ESRI (2022)

Characteristics of the soil. The growth of plants 
depends on the characteristics of the soil, which also 
significantly influence agricultural yields. According to 
field observations and the outcomes of laboratory anal-
yses of soil properties, this study employed data on soil 
characteristics in the field (Table 1). Soil types in the 
study area ranged between entisols, inceptisols, alfisols, 
ultisols, and andisols, with a slope of 0-25%. Generally, 
the soil pH at the study site ranged within 5-6, with or-
ganic C ranging within 0.39-7.74%. Soil sampling points 

were determined according to the toposequence, with 
15-33 sampling points at each toposequence. Soil pH 
was measured with a pH stick (Jackson, 1973), and or-
ganic C was measured according to the Walkley and 
Black method (Walkley & Black,  1934). Total N was 
determined using the Kjeldahl method (Bremner & 
Mulvaney, 1982), and available P was determined us-
ing the Olsen method (soil pH > 5.5) (Olsen et al., 1954). 
The method of ammonium acetate extraction was em-
ployed to analyse available K in soil (Thomas, 1982).
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Climate characteristics. The model incorporated 
climate data to estimate the amount of water availa-
ble and usable by plants. In the yield prediction mod-
el, climate factors significantly affect crop productivity, 
with rainfall and air temperature as the primary de-
terminants of yield outcomes. This predictive model  

considered two key variables: rainfall and evapotran-
spiration. The analysis relied on rainfall and air temper-
ature data collected from climatology stations at the 
research site between 2014 and 2023, as presented in 
Table  2. Evapotranspiration was calculated using the 
Thornthwaite method (Moeletsi et al., 2013). 

Table 2. Climate characteristics at the research site

Table 3. Research parameters of farmers’ socio-economic characteristics  
at rainfed rice fields on location-specific toposequence

Source: compiled based on the analysis of climate characteristics based on climatology stations at the research 
site (2014-2023)

Source: compiled based on the analysis of soil characteristics based on (BRMP) Indonesian Agricultural Assembly and 
Modernization Agency (2005) and data on plant yield recap based on a social survey carried out by researchers at the 
research site

Parameters (units) Lowland paddy fields Midland paddy fields Highland paddy fields Total
pH 5–6 5–6 5–6 5–6

Organic C (%) 0.39–6.03 0.67–4.02 0.96–7.74 0.39–7.74
Total N (%) 0.08–1.63 0.17–1.21 0.17–1.40 0.08–1.63

Available P (ppm) 0.29–23.74 1.04–18.16 1.59–25.78 1.04–25.78
Available K (meq 100g-1) 0.25–0.66 0.20–0.77 0.23–0.81 0.20–0.81

Type of soil
Entisols, Inceptisols, 
Alfisols, Ultisols and 

Andisols

Entisols, Inceptisols, 
Alfisols and Andisols

Entisols, Inceptisols, 
and Andisols

Entisols, Inceptisols, 
Alfisols, Ultisols and 

Andisols
Slope (%) 0-25 0-25 0-25 0-25

Table 1. Research parameters of soil characteristics at rainfed rice fields on location-specific toposequences

Farmers’ socio-economic land management. Data 
were gathered through firsthand interviews with farm-
ers who manage their land. A total of 87 respondents 
were included in the study, of whom 75 were male and 
12 were female. The majority of respondents were aged 
between 51 and 60  years. The  distribution of farmers’ 
education was very diverse, ranging from uneducated 
to a master’s degree. Most of the farmers still use con-
ventional methods of cultivation. The farmer’s tools and 

Parameters (units) Lowland paddy fields Midland paddy fields Highland paddy fields Total

Rainfall (mm year-1) 1,845-4,874 1,845-4,000 2,246-3,954 1,845-4,874

Evapotranspiration  
(mm day-1) 1.90-5.81 1.90-5.81 1.90-5.27 1.90-5.81

techniques affect the yields. To create a site-specific pre-
diction model, this data presented an overview of farmers’ 
socio-economic circumstances and unique land manage-
ment techniques. However, this study used specific data 
on farmers’ socio-economic circumstances (Table 3) and 
land management practices (Table 4) to obtain a site-spe-
cific prediction model that can support precision farming. 
Typically, the development of predictive models only uses 
climate and soil data as the input model.

Parameters (units) Lowland paddy fields Midland paddy fields Highland  
paddy fields Total

Farmer’s age (year) 20-70 31-70 31-70 20-70
Gender Male and female Male and female Male and female Male and female

Farming experience 
(years) 1-30 6-30 6-30 1-30

Education No education–bachelor No education – senior 
high school

No education–junior 
high school No education–bachelor

Farmer’s side job No side job, labourer, 
civil servant

No side job, labourer, 
civil servant, trader

No side job, labourer, 
civil servant

No side job, labourer, 
civil servant, trader

Family involvement

Only the head of the 
family, several family 

members, and all family 
members

Only the head of the 
family, several family 

members, and all family 
members

Only the head of the 
family, several family 

members

Only the head of the 
family, several family 

members, and all family 
members

Source: developed by the authors of this study based on questionnaire data collection
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Machine learning. The BNN analysis results used 
87 data samples, with 22 input parameters including 
4 indicators: soil, climate, farmers’ socio-economic 
data, and land management. The data was operated 
and tested using different numbers of neurons to get 

the most effective results and approach the factual re-
sults. The framework of the analysis conducted in this 
study is presented in Figure  2. The  data was subse-
quently analysed using Pareto to optimise and identify 
the model determinants.

Parameters 
(units) Lowland paddy fields Midland paddy fields Highland paddy fields Total

Seed 
variety

IR64, IR32, ciherang, 
Brengkele, Liwu, Mlati, 

Inpari 43, Mapan, Mekong 
and Sugal

IR64, IR32, ciherang, bengawan, 
mentik wangi, umbul-umbul, 

and barito 

IR64, ciherang, 
bengawan and cepogo

IR64, IR32, ciherang, Brengkele, 
bengawan, Liwu, Mlati, Inpari 
43, HT, umbul-umbul, Mapan, 

Mekong, Sugal, barito and 
cepogo

Cropping 
method

Jajar legowo  
and conventional

Jajar legowo  
and conventional

Jajar legowo  
and conventional

Jajar legowo  
and conventional

Cropping 
technique

Semi-organic and 
conventional Semi-organic and conventional Semi-organic and 

conventional Semi-organic and conventional

Cropping 
pattern

Paddy-paddy-paddy,  
paddy-paddy-secondary 
crops, paddy-secondary 
crops-secondary crops,  
paddy-paddy-fallow,  

paddy-paddy-horticulture,

Paddy-paddy-paddy,  
paddy-paddy-secondary crops, 

paddy-secondary  
crops-secondary crops,  
paddy-paddy-fallow,  

paddy-secondary crops-fallow, 
paddy-paddy-horticulture, 

paddy- horticulture-horticulture

Paddy-paddy-paddy, 
Paddy-paddy-secondary 
crops, paddy-secondary 
crops-secondary crops, 
paddy-paddy-fallow, 

paddy-secondary  
crops-fallow

Paddy-paddy-paddy,  
paddy-paddy-secondary crops, 

paddy-secondary  
crops-secondary crops,  
paddy-paddy-fallow,  

paddy-secondary  
crops-fallow,  

paddy-paddy-horticulture,  
paddy- horticulture-horticulture

Fertiliser 
type

Compost, manure, urea, 
ZA, TS, Phonska, SP36, 

TSP, KCl, NPK, dolomite, 
TSP

Compost, manure, urea, ZA, TS, 
Phonska, SP36, TSP, KCl, NPK

Compost, manure, urea, 
ZA, TS, Phonska, SP36, 

TSP, KCl, NPK

Compost, manure, urea, ZA, TS, 
Phonska, SP36, TSP, KCl, NPK, 

dolomite, TSP

Pest 
disease 
control

No pest disease control, 
preventive, chemical, 

mechanical

No pest disease control, 
chemical, mechanical

No pest disease 
control, preventive, 

chemical, mechanical

No pest disease control, 
preventive, chemical, 

mechanical
Yield  

(tonnes/ha) 0.62-4.34 0.8-4 0.91-3.57 0.62-4.34

Table 4. Research parameters on farmers’ land management characteristics  
at rainfed rice fields on location-specific toposequence

Source: developed by the authors of this study based on questionnaire data collection

Soil characteristics Climate data Socio-economic data Land management 

Data collection 

Data 

BNN analysis Improvement of specific 
toposequence 

Validation & verification Pareto analysis 

Yield prediction 

Figure 2. Framework of yield estimation using machine learning (Bayesian and Pareto approach)
Source: developed by the authors of this study

Six mountainous toposequences were used to 
create the forecast model for rainfed rice yields, us-
ing local and field data to produce a precise model. 

The BNN prediction model was made based on spe-
cific altitude characteristics to increase accuracy at 
particular places.
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Model accuracy analysis. The capability and reliabil-
ity of the predictive model were assessed using accu-
racy analysis, which was also employed to evaluate the 
model’s performance. During the study, the coefficient of 
determination (R2), root mean square error (RMSE), and 
mean absolute percentage error (MAPE) were calculat-
ed. The following equation was used for this evaluation:

RMSE = �∑ (yi-y)2n
i=1

n
  ,                        (1)

MAPE =∑ �yi-y
yi
�n

i=1 × 100%  ,                  (2)

where yi is the prediction result; y is the average factual 
yield; n is the amount of data sample.

Measurement with root mean square error (RMSE) 
involved the analysis to measure the magnitude of er-
ror in the prediction results. The smaller the RMSE val-
ue, the more accurate the prediction result. Meanwhile, 

measurement with mean absolute percentage error 
(MAPE) involved statistical measurement to see the ac-
curacy of estimates in forecasting methods.

RESULTS
Machine learning. The trial-and-error method fre-
quently starts with choosing the ideal weights, the 
number of hidden layers, and the neurons in the hid-
den layers (Fig.  3). The backpropagation algorithm’s 
control settings often depend on the procedure of tri-
al and error. The operation is analogous to the human 
brain. Numerous linked neurons translate input into 
new, useful information. Regardless of the magnitude 
of the input data being processed, NN systems can be 
trained on massive volumes of data rapidly and ef-
fectively. Additionally, NN creates patterns and trends 
for analysis that are unachievable for humans and en-
sures the extraction of pertinent data from extremely 
complicated data sets.

Table 5. Comparison of model accuracy and the number of neurons employed

Note: RMSE – smaller values are better; R2 – greater values are better; * – best values
Source: developed by the authors of this study

Figure 3. Schematic of prediction yield using BNN
Source: developed by the authors of this study

Hidden layer Output layer

Yield prediction
Climate

Soil Characteristics

Socio-economic data

Land management

Input layer

The study employed an efficient model compris-
ing three neurons, based on the findings of the test. 
The test involved ten different input neurons (Fig. 3).  

Table 5 presents trial and error testing using ten dif-
ferent neurons, with the lowest RMSE of 0.442 and the 
most outstanding R2 score of 0.840.

Toposequence Parameters
Number of neurons

1 2 3 4 5 6 7 8 9 10

Total
RMSE 0.701 0.607 0.442* 0.696 0.704 0.704 0.704 0.705 0.704 0.704

R2 0.519 0.638 0.840* 0.525 0.513 0.512 0.512 0.511 0.512 0.512

Step 1: BNN analysis. The accuracy of yield pro-
jections at certain places was greater than the overall 
yield. The findings of this study revealed that predic-
tions made using location-specific altitude data pro-
duced satisfactory outcomes, with the three models’ 
coefficient of determination over 0.9. The ideal number 
of neurons for the models at the three toposequences 
varied, with highland paddy fields requiring 8 neurons, 
midland paddy fields – 1 neuron, and lowland paddy 
fields – 3 neurons. The results of the model accuracy 
comparison are presented in Figure 4.

As demonstrated in Figure 4, the three revisions of 
the toposequence-based model demonstrated an in-
crease in performance, with the RMSE and R2 values 
showing extremely satisfactory results when compared 
to when the model was built using total. Pearson val-
ues in all four models were more significant than 0.9, 
with the midland paddy fields prediction model having 
the greatest value. The total model value was 0.8396 
based on the coefficient of determination, whereas the 
value of the three model modifications was above 0.99 
or remarkably close to the factual value. Analogously to 
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the RMSE and MAPE values, the evaluation value of the 
error of this model was low in the lowland paddy fields, 
midland paddy fields, and highland paddy fields models 
when compared to the total model with RMSE (0.4421) 

and MAPE (21.95%). This demonstrates that when the 
prediction model was modified based on the accuracy 
test value, the Pearson and R2 values were close to 1, 
while the RMSE and MAPE values were close to 0.

Yi
el

d 
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s 
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) 

(a) (b) 
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Pearson = 0.9995 
R2  = 0.9990 
RMSE = 0.043 
MAPE = 1.80% 

Pearson  = 0.9163 
R2  = 0.8396 
RMSE = 0.4421 
MAPE = 21.95% 

Pearson = 0.9994 
R2 = 0.9987 
RMSE = 0.041 
MAPE = 1.61% 

Pearson = 0.9999 
R2 = 0.9998 
RMSE = 0.027 
MAPE = 1.49% 

Note: RMSE – smaller values are better; R2 greater values are better; * – best values
Source: developed by the author of this study

Figure 4. Location-specific crop yield prediction accuracy (a) Total; (b) Lowland paddy fields;  
(c) Midland paddy fields; (d) Highland paddy fields

Source: developed by the authors of this study

Table  6 depicts trial-and-error testing with ten 
different neurons, with the variation in toposequence 
indicating a different number of neurons used to con-
struct a prediction model. According to M.K.A. Kadir et 
al.  (2015), testing neurons using the trial-and-error 
approach is critical since this method can identify 
a model with the ideal composition of neurons and  

parameters. According to O.  Bazrafshan  et al.  (2022), 
in machine learning models, the conditions in the 
hidden  layer heavily influence the outcomes of the 
prediction models formed; the results of modifications 
and tests in Tables 5 and 6 demonstrate that the num-
ber of neurons in a different hidden layer produces 
different performance.

Toposequence Parameters
Number of neurons

1 2 3 4 5 6 7 8 9 10

lowland paddy 
fields

RMSE 0.946 0.946 0.043* 0.946 0.946 0.946 0.946 0.946 0.946 0.946

R2 0.580 0.587 0.999* 0.580 0.585 0.588 0.588 0.588 0.576 0.588

midland paddy 
fields

RMSE 0.041* 0.089 0.093 0.090 0.095 0.105 0.104 0.098 0.104 0.107

R2 0.999* 0.994 0.993 0.993 0.992 0.990 0.991 0.992 0.991 0.990

highland paddy 
fields

RMSE 0.032 0.034 0.028 0.034 0.034 0.027 0.033 0.026* 0.029 0.034

R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000* 1.000 1.000

Table 6. Comparison of the number of effective neurons at each toposequence

The results of the analysis by location classification 
are presented in Table 6 and Figure 4, demonstrating 
that the correlation values were highly significant and 

closely related to the analysis of input data in specif-
ic locations. This proves that presenting data based on 
specific altitude zones simplifies decision-making for 
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users on issues related to agriculture. They show the 
same significance of correlation between lowland, mid-
land, and highland rice fields. In this case, this was fac-
tored in when calculating the amount of input data that 
needed to be provided during the cultivation phase to 
obtain the best yields.

Step 2: Pareto analysis. According to the find-
ings of this study, the rice harvest prediction mod-
el based on particular heights produces greater  

accuracy. According to the Pareto analysis’s findings, 
each elevation criterion had a unique effect standard, 
as presented in Figure 5. The available P parameter 
was the factor that had the most significant influence 
according to the Pareto analysis results at a lowland 
paddy field. The farmer’s education determines the 
prediction results for midland paddy fields, whereas 
the slope factor is the critical element for highland 
paddy fields.

Table 7. The p-value of each parameter classified by a specific toposequence

Source: developed by the authors of this study

Figure 5. Pareto analysis at each toposequence: (a) Lowland paddy fields; (b) Midland paddy fields;  
(c) Highland paddy fields

Source: developed by the authors of this study

(a) (b) (c) 
A Type of soil G Available K M Education R Cropping method 
B Slope H Rainfall N Farming experience S Cropping technique 
C pH I Elevation O Farmer side job T Cropping pattern 
D Organic C J Evapotranspiration P Family involvement U Fertiliser type 
E Total N K Farmer’s age Q Seed variety V Pest disease control 
F Available P L Gender 

The essential parameters – Available P, Total N, 
Pest disease control, and Farmer age, – presented in 
Figure  5, are what the lowland paddy fields predic-
tion model depended on. However, only Available P 
had a p-value < 0.05 (Table 7). In the lowland paddy 
fields, primarily Available P, the data distribution var-
ied, dominated by levels of Available P (< 4 ppm) with 
41.2% (Table 8). Available P in lowland paddy fields, 

which had the greatest average yields, was at levels 
of > 15 ppm with 2.97 tonnes ha-1. This shows that el-
evated levels of Available P can increase rice yields 
in rainfed rice fields. Based on research by S. Supriya-
di et al. (2022), available P is closely related to the soil 
quality index, especially in paddy fields. This shows 
that Available P in lowland paddy fields is one of the 
determining factors for this toposequence.

Toposequence Parameter p-value

Lowland paddy fields
Available P

0.024

Midland paddy fields

Rainfall 0.008

Gender 0.003

Education 0.000

Seed variety 0.009

Highland paddy fields

Slope 0.002

Available P 0.020

Gender 0.023

Cropping pattern 0.018
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In contrast, the midland paddy fields model used 
four parameters: rainfall, education level, gender, and 
seed type (Fig. 5b), with all parameters having a p-val-
ue <  0.05 (Table  7). Based on climatic characteristics, 
rainfall is one of the determining factors in rice cul-
tivation in midland paddy fields. Based on the land 
suitability guidelines for food crop cultivation, rainfed 
rice is optimally cultivated with rainfall conditions of  
1,500-2,000  mm  year-1 (Wahyunto  et al.,  2016). This 
condition is under the distribution of analytical data in 
this study, where land with rainfall of 1,500-2,000 mm 
year-1 had the greatest average yield of 2.79 tonnes ha-1.  
Meanwhile, land with rainfall above 2,500 mm year-1 had 

an average yield of 1.64 tonnes ha-1. The use of seed va-
rieties in the paddy fields medium also varied. In total, 6 
types of varieties were cultivated in the medium of pad-
dy fields. IR64 dominated the existing seed varieties by 
as much as 57.6%, while the greatest average yield was 
for the Barito variety, which had 3.10 tonnes ha-1.

Apart from climatic factors and seed varieties, 
the midland paddy fields also had a significant corre-
lation with the socio-economic aspects of farmers in 
the midland paddy fields, especially gender and edu-
cation. Farmers managing rainfed lowland rice fields 
were dominated by men, reaching 84.8%, while women  
accounted for 15.2%. Additionally, the yields on 

Toposequence Parameter Parameter class Percentage (%) Yield (ton ha-1)

Lowland paddy fields Available P (ppm)

< 4 41.2 2.23
4-8 14.7 2.17

8-10 14.7 2.36
10-15 5.9 2.33
> 15 23.5 2.97

Midland paddy fields

Rainfall (mm year-1)

<1500 0.0 0.00
1,500-2,000 15.2 2.79
2,000-2,500 39.4 2.44
2,500-3,000 9.1 1.39

>3,000 36.4 1.64

Farmers’ gender
Male 84.8 2.19

Female 15.2 1.65

Farmers’ education

No education 3.0 1.24
Elementary school 66.7 2.39
Junior high school 24.2 1.36
Senior high school 6.1 2.36
Bachelor’s degree 0.0 0.00

Seed variety

Barito 3.0 3.10
Ciherang 27.3 2.38

IR32 6.1 1.32
IR64 57.6 1.96

Mentik wangi 3.0 3.00
Umbul-umbul 3.0 2.05

Highland paddy fields

Slope (%)

0–8 60.0 3.57
8–15 35.0 1.93

15–25 5.0 1.37
25–40 0.0 0.00

>40 0.0 0.00

Available-P (ppm)

<4 55.0 1.29
4–8 10.0 2.11

8–10 20.0 2.02
10–15 5.0 2.00

>15 10.0 2.54

Farmers’ gender
Male 90.0 2.31

Female 10.0 1.61

Cropping pattern

paddy-paddy-paddy 10.0 2.33
paddy-paddy-fallow 15.0 2.68

paddy-paddy-secondary crop 35.0 1.63
paddy-secondary crop-secondary crop 35.0 1.17

Paddy-secondary crop-fallow 5.0 1.24

Table 8. Prediction determinants of the rainfed lowland rice harvest for each toposesequence

Source: developed by the authors of this study
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land managed by men had greater yields, with 
2.19  tonnes  ha-1, against those managed by women, 
with 1.65  tonnes ha- 1. Whereas in education, the dis-
tribution of data on midland paddy fields varied wide-
ly, starting from no education (3%), elementary school 
(66.7%), junior high school (24.2%), and senior high 
school (6.1%). The average yield based on the high-
est education classification in the elementary school 
education class was 2.39  tonnes ha-1 and senior high 
school 2.36  tonnes  ha-1. In comparison, no education 
parameter resulted in the lowest indicators, with an av-
erage yield of 1.24 tonnes ha-1. 

The highland paddy fields based on Pareto analysis 
had six key parameters, namely Slope, cropping pattern, 
Available P, Gender, Pest disease control, and Seed var-
iables that influenced the  prediction model, with the 
four parameters having a p-value < 0.05. According to 
the findings of the p-value test in Table 7, like lowland 
paddy fields, Available P in highland paddy fields had 
a significant correlation with crop yields. Available P 
yields are directly proportional to yields, as presented in 
Table 8. Available P levels < 4 ppm had the lowest yields 
with 1.29 tonnes ha-1, while Available P levels > 15 ppm 
were the greatest with 2.54  tonnes  ha-1. Gender also 
had a significant correlation with rice yields, as estab-
lished for midland paddy fields. In the highland paddy 
fields, male farmers accounted for 90%, with an average 
harvest of 2.31 tonnes ha-1, while only 10% were wom-
en with an average harvest of 1.61 tonnes ha-1.

Slope was one of the predictive determinants with 
the most striking difference in each class on highland 
paddy fields (Table  8). The analysis results revealed 
that a slope of 0-8% dominated the area with 60% 
and had the greatest average yield, which reached 
3.57  tonnes ha-1, while the distribution of data which 
had a slope class of 8-15% with an average harvest of 
1.93 tonnes ha-1, and 15-25% with an average harvest 
of only 1.37  tonnes  ha-1. Slope is one of the critical 
points in every crop cultivation, including rice. Accord-
ing to N. Takeda et al. (2019), cultivation of rice on steep 
slopes poses significant challenges in the management 
of irrigation and groundwater resources. At the same 
time, according to T. Tu et al. (2023), rice cultivation in 
the highlands with steep slopes has many obstacles, 
such as management, difficulty in mechanisation, and 
distribution of fertiliser inputs.

DISCUSSION
The tests conducted in this study, which applied four 
principal input parameters and three neurons in the 
hidden layer, yielded the most effective results among 
all the network configurations assessed. As demon-
strated by L.  Mou  et al.  (2022), Bayesian Neural Net-
works (BNN) were capable of simultaneously producing 
predicted outcomes and measurement uncertainties, 
thereby indicating the deviation of input data from the 
training data distribution. This approach, as highlighted  

by S.K. Bal et al.  (2022), effectively mitigated the neg-
ative effects caused by out-of-distribution  (OOD) data 
and prevented erroneous predictions, even with a sin-
gle model parameter. The development of the BNN 
model in the present study was based on the specif-
ic toposequence of the farmer’s land to enhance the 
accuracy of machine learning analysis. According to 
D.  Paudel  et al.  (2021) regional and location-specific 
input data were shown to support the construction of 
reliable predictive models. The model’s accuracy along 
defined toposequences corresponded closely with ob-
served values, illustrating the high effectiveness of the 
predictive modelling approach. T.  Hengl  et al.  (2018) 
recognised modern machine learning methods as pow-
erful, data-driven tools for predicting soil properties 
and landscape variability. Moreover, A.M. J.-C. Wadoux et 
al. (2023) found that the integration of high-resolution, 
site-specific data – including environmental and man-
agement variables – substantially reduced prediction 
uncertainty and enhanced model robustness. This find-
ing underscored the significance of tailoring modelling 
strategies to various elevation zones within a topose-
quence, as each zone was influenced by distinct factors.

It was therefore clear that individual elevation 
categories required separate modelling frameworks to 
account for their specific determinants. T. Van Klompen-
burg  et al.  (2020) demonstrated that yield prediction 
models incorporating site-specific factors markedly 
reduced errors. Furthermore, according to D. Paudel et 
al. (2022), such models provided stakeholders with im-
proved insights and decision-making tools for policy 
development and strategic planning in agriculture. The 
prediction model developed using elevation categories 
followed an analogous structure, beginning with yield 
values and identifying key production determinants. 
According to Z.C. He et al. (2022), yield prediction meth-
ods generally required site-specific measurements due 
to diverse local conditions such as soil composition, 
climate variability, socio-cultural norms, and farmers’ 
management practices. S.  Jeong et al.  (2022) observed 
that large-scale forecasts at the district or city lev-
el tended to be less sensitive to rice yield variations, 
owing to the compounding effects of climate change, 
soil heterogeneity, and inconsistent land management. 
Conversely, X. Yue et al.  (2022) highlighted the signifi-
cance of landscape-level predictions, as they provided 
deeper insights into crop responses under specific en-
vironmental and agronomic practices.

The Bayesian estimation approach employed in the 
present study contributed to the broader modelling ef-
forts aimed at explaining long-term trends in Indonesia’s 
agricultural productivity, as previously conceptualised 
in the literature. Specifically, it added nuance to existing 
research stock models by incorporating the complexity 
of Java’s toposequences. Moreover, the current study ex-
tended this framework by introducing uncertainty anal-
ysis into the process of forming new research capital  
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stocks from agricultural research investments. Al-
though the unpredictable nature of individual research 
outcomes was already recognised within Indonesia’s 
agricultural science system, this study offered empirical 
evidence to substantiate that claim. This uncertainty, as 
demonstrated in the findings, underscored the neces-
sity of maintaining a diverse an d adaptable research 
portfolio. Supporting varied productivity-enhancing 
innovations and promoting flexible, incentive-based 
policies in agricultural science and technology were 
recommended strategies to address this challenge ef-
fectively. Understanding how neural networks learned 
was also considered essential. According to standard 
practice, several visualisation techniques were em-
ployed, including intermediate activation visualisation, 
convolution filter mapping, heat maps, and saliency di-
agrams. These methods, as shown in the study, illustrat-
ed how the model internally represented visual envi-
ronments and how its feature extraction evolved across 
neural layers  – enhancing compositional awareness, 
class discrimination, and yield prediction performance. 
Furthermore, visualisation tools helped in identifying 
model weaknesses and guiding model refinement.

The Bayesian approach also enabled the identifi-
cation of critical limiting factors, which could inform 
policy recommendations for agricultural communities 
and governmental bodies aiming to strengthen and 
sustain the agrarian sector in pursuit of food security. 
Finally, W.S.  Dewi  et al.  (2022) highlighted that agri-
culture is a cornerstone of global resource utilisation, 
consuming approximately 70% of surface and ground-
water and 30% of global energy output, emphasising its 
centrality in food and energy supply systems. The crea-
tion of this framework for evaluating the performance 
of farming systems could make a critical contribution 
to the current study by presenting a systematic per-
formance appraisal model for the distribution system 
using a Bayesian neural network. Previously, the de-
velopment of such frameworks focused on increasing 
demand-oriented management of on-farm agricultural 
systems. Notably, the paradigm is limited to agricultural 
distribution systems as a critical element of off-farm 
agrarian management. The presented framework can 
be used as a decision-support tool to prioritise mod-
ernisation solutions for the farming distribution system. 
It also aids the yielding process and governance in de-
termining the technical implications of building these 
systems and the environmental consequences.

CONCLUSIONS
The presented study achieved high accuracy in predict-
ing rainfed rice yields in the tropical monsoon climate 

of central Java, Indonesia, by combining machine learn-
ing methods, specifically Bayesian neural networks 
(BNN), and Pareto analysis. Models adapted to eleva-
tion toposequences showed a significant advantage 
over general approaches, demonstrating a coefficient 
of determination (R2) of up to 0.999, while the gen-
eral model only reached 0.8396. The error indicators 
(RMSE = 0.4421; MAPE = 21.95%) were low, while Pear-
son’s correlation coefficients exceeded 0.90, confirming 
the high reliability of the models. The study identified 
specific factors that determine yield in different agro-
ecological conditions. In lowland and mountainous 
areas, the most significant factor was the content of 
available phosphorus in the soil: at P levels > 15 ppm, 
the yield reached 2.97  tonnes  ha⁻¹ in lowlands and 
2.54  tonnes  ha⁻¹ in highlands. In mid-mountain con-
ditions, climatic (precipitation 1,500-2,000 mm/year – 
2.79 tonnes ha⁻¹) and socio-economic factors played a 
decisive role: level of education, gender of the farmer, 
and choice of seed variety. It was found that male farm-
ers, as well as those with at least a basic education, 
achieved greater yields.

Furthermore, the slope indicator proved to be crit-
ical for mountainous areas: plots with a slope of 0-8% 
had the greatest average yield (3.57 tonnes ha⁻¹), while 
on slopes of 15-25% it decreased to 1.37 tonnes ha⁻¹. 
This confirmed scientific observations regarding the 
limitations in mechanisation, irrigation, and fertiliser 
application on steep slopes. The findings confirmed 
the effectiveness of integrating environmental, so-
cio-economic, and technological parameters into 
precision agriculture models. The high sensitivity 
of models to local conditions allows optimising the 
agrotechnical solutions, increasing resource efficiency, 
and supporting for sustainable agricultural develop-
ment in conditions of climate instability. Prospects for 
further research include conducting long-term field 
observations involving dynamic agroclimatic chang-
es, expanding the socio-economic database of farms, 
developing integrated resource management models 
based on remote sensing of the Earth, and adapting 
artificial intelligence to decision-making systems in 
precision farming.
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Прогнозування урожайності рису на богарних землях у мусонній тропічній 
зоні Яви, Індонезія з використанням машинного навчання
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Анотація. Вирощування рису на богарних землях у тропічних районах Яви, Індонезія, що знаходяться під 
впливом мусонних дощів, ускладнюється через нестачу поживних речовин, непередбачуваність опадів 
та обмежені інвестиції в сільське господарство, що призводить до коливань врожайності. Метою цього 
дослідження було розроблення точної моделі прогнозування врожайності рису з використанням машинного 
навчання, адаптованого до конкретних топологічних послідовностей у Центральній Яві. Застосовано комплекс 
польових та лабораторних методів, заснованих на опитуваннях, з урахуванням кліматичних, ґрунтових, 
соціально-економічних та агроменеджментних змінних із 87 цільових точок відбору проб. Аналіз за допомогою 
баєсівських нейронних мереж (BNN) показав помірну точність (R² = 0,840; RMSE = 0,442), однак точність суттєво 
підвищувалась при адаптації моделей до категорій за висотою, досягаючи R² до 0,999. Для низинних полів 
найбільший вплив мала наявність доступного фосфору (P); у зонах середньої висоти ключовими чинниками 
були кількість опадів, стать, освіта та сорт насіння; для високогірних районів – ухил, доступний фосфор, стать і 
сівозміна. Аналіз Парето підтвердив ідентифікацію цих основних детермінант урожайності у кожному топосліді. 
Інтеграція методів BNN і Парето дозволила створити високоточну, локалізовану модель прогнозування. 
Робота довела, що адаптація моделей машинного навчання до агроекологічних зон за висотою покращує 
їхню ефективність і практичне застосування. Результати є особливо цінними для аграрних стейкґолдерів – 
зокрема для політиків, дорадчих служб і фермерів, які можуть використати прогностичні дані для оптимізації 
управління богарним рисівництвом в умовах змінного клімату

Ключові слова: аграрна стійкість; баєсівська нейронна мережа (BNN); продовольча безпека; аналіз Парето; 
точне землеробство
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