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АНОТАЦІЯ 

Третяк В.С. Розроблення діалогової системи на основі LLM для автоматизованої 
технічної підтримки. – Кваліфікаційна робота на правах рукопису. 

Кваліфікаційна робота на здобуття освітнього ступеня магістр за спеціальністю 122 – 
Комп’ютерні науки. – Поліський національний університет, Житомир, 2025.  

Обсяг кваліфікаційної роботи: 52 сторінки (12 – рисунків, 6 – формул, 4 – таблиць, 2 
– додатки, 51 – джерел). 

Ключові слова: технічна підтримка, великі мовні моделі, чат-бот, теорія масового 
обслуговування, клієнт-серверна архітектура, обробка природної мови. 

 
Кваліфікаційну роботу присвячено розробці методу та системи автоматизації 

процесів Service Desk на основі мультимодальних великих мовних моделей (LLM). У роботі 
обґрунтовано використання теорії масового обслуговування (модель M/M/n) для доведення 
ефективності швидкісних LLM у зменшенні черг запитів. Запропоновано архітектурний 
підхід Client-Side Integration для прямої оркестрації API (Google, OpenRouter, MegaNova) та 
розроблено стратегію каскадного перемикання моделей (Gemini 2.5 Flash, Gemma, Mistral) 
для забезпечення відмовостійкості. 

Програмна реалізація виконана у вигляді Single Page Application (SPA) з 
використанням JavaScript, Web Speech API для голосового вводу та Chart.js для візуалізації 
KPI. Експериментальне дослідження підтвердило економічну ефективність впровадження 
(ROI) та продуктивність системи під навантаженням. Практичне значення полягає у 
можливості автоматизації першої лінії підтримки (L1) для малого та середнього бізнесу з 
режимом роботи 24/7. 

 

SUMMARY 

Tretiak V.S. Development of a Dialogue System Based on LLM for Automated Technical 
Support – Qualifying work in manuscript form. 

Qualification work for the degree of Master in specialty 122 – Computer Science. – Polissia 
National University, Zhytomyr, 2025. 

Volume of qualifying work: 52 pages (12 – figures, 6 – formulas, 4 – tables, 2 – appendices, 
51 – references). 

Keywords: technical support, large language models, chatbot, queuing theory, client-server 
architecture, natural language processing. 

 
The thesis is devoted to the development of a method and system for automating Service 

Desk processes using multimodal Large Language Models (LLM). The study uses queuing theory 
(M/M/n model) to prove the effectiveness of high-speed LLMs in reducing request queues. A Client-
Side Integration architectural approach is proposed for direct API orchestration (Google, 
OpenRouter, MegaNova), featuring a fallback strategy with models like Gemini 2.5 Flash, Gemma, 
and Mistral to ensure fault tolerance. 

The software is implemented as a Single Page Application (SPA) using JavaScript, Web 
Speech API for voice input, and Chart.js for KPI visualization. Experimental research confirmed 
the economic efficiency (ROI) and system performance under load. The practical significance lies 
in the automation of first-line support (L1) for small and medium-sized enterprises, providing 24/7 
service. 
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ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ 

ШІ – штучний інтелект. 

СМО – система масового обслуговування. 

ФОП – фонд оплати праці. 

API – (англ. Application Programming Interface) програмний інтерфейс застосунку. 

CORS – (англ. Cross-Origin Resource Sharing) механізм спільного використання 

ресурсів між різними джерелами. 

CSS3 – (англ. Cascading Style Sheets) каскадні таблиці стилів третього покоління. 

DOM – (англ. Document Object Model) об’єктна модель документа. 

FCR – (англ. First Contact Resolution) показник вирішення запиту при першому 

зверненні. 

HTML5 – (англ. HyperText Markup Language) п'ята версія мови гіпертекстової 

розмітки. 

HTTP – (англ. HyperText Transfer Protocol) протокол передачі гіпертексту. 

ITIL – (англ. Information Technology Infrastructure Library) бібліотека інфраструктури 

інформаційних технологій. 

IVR – (англ. Interactive Voice Response) система інтерактивних голосових відповідей. 

KPI – (англ. Key Performance Indicators) ключові показники ефективності. 

LLM – (англ. Large Language Models) великі мовні моделі. 

MoE – (англ. Mixture of Experts) архітектура нейронних мереж «суміш експертів». 

MTTR – (англ. Mean Time To Repair / Resolve) середній час вирішення інциденту. 

PII – (англ. Personally Identifiable Information) персональні дані, що дозволяють 

ідентифікувати особу. 

RAG – (англ. Retrieval-Augmented Generation) технологія генерації з доповненням 

пошуку. 

REST – (англ. Representational State Transfer) архітектурний стиль взаємодії 

компонентів розподіленого застосунку. 

ROI – (англ. Return on Investment) показник рентабельності інвестицій. 

SPA – (англ. Single Page Application) односторінковий вебзастосунок. 

SPOC – (англ. Single Point of Contact) єдина точка контакту. 

SVG – (англ. Scalable Vector Graphics) масштабована векторна графіка. 

UX – (англ. User Experience) досвід користувача. 
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ВСТУП 

Стрімка цифровізація всіх сфер суспільного життя, зростання обсягів 

інформаційних потоків та перехід бізнес-процесів у онлайн-середовище 

зумовили безпрецедентне навантаження на служби технічної підтримки. У 

сучасному світі якість та швидкість обслуговування клієнтів стають 

визначальними факторами конкурентоспроможності підприємств. Традиційні 

підходи до організації технічної підтримки, які базуються на використанні 

людських ресурсів або примітивних сценарних чат-ботів, вичерпують свій 

потенціал в умовах експоненційного зростання кількості запитів. Оператори 

фізично не встигають обробляти потік звернень у пікові години, що призводить 

до виникнення черг, збільшення часу очікування та, як наслідок, зниження 

рівня задоволеності користувачів. 

З розвитком технологій штучного інтелекту (ШІ), зокрема появою 

великих мовних моделей (Large Language Models – LLM) на базі архітектури 

трансформерів, відкрилися нові горизонти для автоматизації інтелектуальної 

діяльності. Системи на основі LLM здатні не просто класифікувати запити за 

ключовими словами, а й розуміти контекст, генерувати змістовні відповіді, 

аналізувати неструктуровані дані та навіть виконувати роль експертних систем. 

Однак, незважаючи на значний прогрес, інтеграція таких моделей у реальні 

системи підтримки стикається з низкою проблем: висока затримка (latency) при 

генерації відповідей, складність управління діалоговим контекстом, 

необхідність забезпечення точності технічних консультацій та потреба у 

гнучкому перемиканні між різними моделями залежно від типу задачі. 

Актуальність теми дослідження обумовлена необхідністю розроблення 

адаптивних діалогових систем, які поєднують у собі можливості передових 

LLM (таких як Gemini, Gemma, Mistral) з ефективними механізмами управління 

навантаженням та адміністративного контролю. Існуючі рішення часто є 
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монолітними та прив'язаними до одного провайдера, що обмежує гнучкість та 

підвищує експлуатаційні ризики. Розробка системи, що дозволяє динамічно 

маршрутизувати запити між різними API (Google, OpenRouter, MegaNova) 

безпосередньо з клієнтського інтерфейсу, є важливим науково-прикладним 

завданням, вирішення якого дозволить оптимізувати ресурси та підвищити 

надійність технічної підтримки. 

Зв’язок роботи з науковими програмами, планами, темами. Робота 

виконується в рамках наукового напрямку кафедри комп'ютерних технологій і 

моделювання систем, пов'язаного з дослідженням методів штучного інтелекту, 

математичного моделювання складних систем та розробки людино-машинних 

інтерфейсів. Дослідження базується на матеріалах курсових робіт та звітів з 

практики, присвячених моделюванню систем масового обслуговування та 

аналізу ефективності LLM. 

Мета дослідження полягає у підвищенні ефективності автоматизованої 

технічної підтримки шляхом розроблення та програмної реалізації діалогової 

системи на основі мультимодельного підходу, що забезпечує мінімізацію 

затримок, високу релевантність відповідей та можливість адміністративного 

втручання в процес обслуговування. 

Для досягнення поставленої мети необхідно вирішити такі завдання: 

1. Провести системний аналіз сучасного стану проблеми автоматизації 

технічної підтримки та виявити обмеження існуючих діалогових систем. 

2. Обґрунтувати доцільність використання стохастичних моделей 

(теорія масового обслуговування) для опису процесів надходження та обробки 

запитів у діалогових системах. 

3. Розробити концептуальну архітектуру системи, що передбачає 

пряму взаємодію клієнтської частини з API декількох провайдерів LLM (Google 

Generative AI, OpenRouter, MegaNova) для забезпечення відмовостійкості та 

варіативності генерації. 
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4. Побудувати математичну модель діалогової системи, визначивши 

основні параметри стану (активний чат, обрана модель, режим адміністратора) 

та формалізувати алгоритми їх зміни. 

5. Розробити алгоритмічне забезпечення для обробки мультимедійних 

даних (зображення, голос) та реалізувати механізм збору статистичних 

показників ефективності (KPI) безпосередньо у веб-інтерфейсі. 

6. Здійснити програмну реалізацію прототипу системи з 

використанням сучасних веб-технологій (JavaScript, DOM API) та провести 

аналіз її функціональних можливостей. 

Об’єктом дослідження є процес автоматизованої обробки звернень 

користувачів у системах технічної підтримки. 

Предметом дослідження є моделі, методи та алгоритми побудови 

адаптивних діалогових інтерфейсів на основі інтеграції розподілених великих 

мовних моделей. 

Огляд сучасного стану проблеми: Існуючі автоматизовані системи 

(Rule-based, IVR) мають суттєві обмеження щодо гнучкості діалогу та 

розуміння контексту. Сучасні хмарні рішення часто характеризуються високою 

затримкою (latency) та залежністю від одного постачальника. Запропонований 

підхід передбачає використання легковагової клієнтської архітектури з 

динамічною маршрутизацією запитів до найбільш ефективної моделі в 

конкретний момент часу, що дозволяє вирішити проблему «пляшкового 

горлечка». 

Методи дослідження. У роботі використано комплекс загальнонаукових 

та спеціальних методів: 

● Аналіз літературних джерел – для вивчення сучасних підходів до 

побудови LLM-систем та проблем затримок (latency). 

● Теорія масового обслуговування – для математичного моделювання 

потоків запитів та оцінки завантаженості системи (модель M/M/n). 
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● Об'єктно-орієнтоване проєктування – для розробки структури 

клієнтського застосунку, класів інтерфейсу та об'єктів стану (statsData, 

adminModes). 

● Експериментальне моделювання – для перевірки коректності роботи 

інтеграції з API та алгоритмів перемикання контексту. 

Програмні засоби: Мова програмування JavaScript, технології 

HTML5/CSS3, бібліотеки Chart.js (візуалізація), html2pdf.js (звітність), Web 

Speech API, Fetch API, а також інструментарій Google AI Studio та OpenRouter. 

Наукова новизна одержаних результатів полягає у: 

1. Удосконаленні архітектурного підходу до побудови веб-клієнтів для 

LLM, який, на відміну від традиційних серверних рішень, реалізує динамічну 

маршрутизацію запитів (currentModel) на стороні клієнта, що дозволяє 

зменшити латентність та навантаження на проміжну інфраструктуру. 

2. Розробленні формалізованої моделі гібридного управління діалогом, 

що поєднує автоматичну генерацію відповідей з механізмом пріоритетного 

адміністративного перехоплення (режим «горіх»), що забезпечує контроль 

якості в критичних ситуаціях. 

Практичне значення одержаних результатів. Розроблена діалогова 

система є повністю функціональним інструментом, готовим до впровадження у 

процеси технічної підтримки малих та середніх підприємств. Реалізований 

функціонал підтримки мультимодального вводу (голос, зображення) та 

автоматичного збору статистики за категоріями (Hardware, Software, Network) 

дозволяє значно прискорити діагностику проблем та підвищити продуктивність 

роботи операторів. Результати роботи можуть бути використані при 

проєктуванні корпоративних систем обслуговування клієнтів. 

 

  



10 
 

РОЗДІЛ 1. АНАЛІЗ ПРОБЛЕМИ АВТОМАТИЗАЦІЇ ТЕХНІЧНОЇ 

ПІДТРИМКИ ТА ТЕОРЕТИЧНІ ЗАСАДИ ВИКОРИСТАННЯ LLM 

1.1. Аналіз сучасного стану систем технічної підтримки та проблеми 

масштабування 

Сучасні інформаційні системи характеризуються високим рівнем 

складності, що неминуче призводить до виникнення технічних проблем у 

кінцевих користувачів. Служби технічної підтримки (Service Desk) виступають 

єдиною точкою контакту (SPOC) між користувачем та IT-інфраструктурою. 

Згідно з методологією ITIL, ефективність роботи Service Desk оцінюється за 

такими метриками, як середній час вирішення інциденту (MTTR), відсоток 

вирішення при першому зверненні (FCR) та рівень доступності сервісу. 

Таблиця 1.1 – Орієнтовний розподіл навантаження на діалогову систему 

протягом робочого дня 

Час робочої 

доби 

Орієнтовна кількість 

запитів за годину 

Пояснення 

08:30 – 10:00 30–40 Початок робочого дня, 

активність громадян зранку 

(можливі перебої в системі) 

10:00 – 12:30 60–80 Пік звернень, основна 

активність (велика 

ймовірність перебоїв 

системи) 

13:30 – 14:30 15–25 Післяобіднє навантаження 

14:30 – 17:00 40–60 Другий пік, другої 

половини дня (ймовірність 

перебоїв системи) 
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Час робочої 

доби 

Орієнтовна кількість 

запитів за годину 

Пояснення 

17:00 – 17:30 10–20 Кінець робочого дня 

 

В умовах зростання кількості цифрових сервісів спостерігається 

тенденція до експоненційного збільшення навантаження на операторів 

підтримки. Статистичні дані (табл 1.1), які було обрано з гіпотетичного 

сценарію використання діалогової системи у структурі Житомирської міської 

ради свідчать, що в пікові години (наприклад, початок робочого дня або періоди 

системних збоїв) інтенсивність надходження запитів λ може перевищувати 

пропускну здатність системи обслуговування μ. Це призводить до формування 

черг, зростання часу очікування  𝑊𝑞 та, у критичних випадках, до відмови в 

обслуговуванні. 

Класичні підходи до автоматизації, такі як IVR-меню (Interactive Voice 

Response) та бази знань (Knowledge Base), виявилися недостатньо ефективними 

для вирішення нестандартних запитів. Користувачі часто не можуть самостійно 

класифікувати свою проблему або знайти відповідне рішення у статичній 

документації. Сценарні чат-боти (Rule-based chatbots), що набули поширення у 

2010-х роках, також мають суттєві обмеження: вони діють у межах жорстко 

заданих алгоритмів і не здатні підтримувати контекст діалогу при відхиленні 

користувача від передбаченого сценарію. 

Поява великих мовних моделей (LLM) змінила парадигму автоматизації. 

На відміну від детермінованих алгоритмів, LLM використовують імовірнісні 

методи для генерації тексту, що дозволяє їм адаптуватися до стилю спілкування 

користувача, розуміти нечіткі формулювання та надавати персоналізовані 

консультації. Проте впровадження LLM створює нові виклики, пов'язані з 

обчислювальною складністю, вартістю генерації токенів та затримками 
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відповіді. Дослідження показують, що затримка понад 2 секунди у діалоговій 

системі суттєво знижує когнітивне залучення користувача, що робить задачу 

мінімізації латентності критично важливою [44]. 

 

1.2. Теоретичні основи функціонування великих мовних моделей у 

діалогових системах 

Основою сучасних діалогових систем є архітектура трансформерів 

(Transformer), яка базується на механізмі уваги (Self-Attention). Цей механізм 

дозволяє моделі враховувати залежності між усіма словами у вхідній 

послідовності, незалежно від їх відстані один від одного, що є ключовою 

перевагою над рекурентними мережами (RNN/LSTM). 

У контексті розроблюваної системи розглядається використання трьох 

класів моделей, доступ до яких реалізується через відповідні API: 

1. Gemini (Google DeepMind): Мультимодальна модель, здатна 

обробляти текст, зображення та аудіо. У роботі використовується версія gemini-

2.5-flash, яка оптимізована для високошвидкісного інференсу (Low Latency). Це 

критично для систем реального часу, де швидкість відповіді має пріоритет над 

глибиною аналізу. Архітектурно Gemini підтримує велике контекстне вікно, що 

дозволяє передавати історію діалогу для збереження зв'язності розмови. 

2. Gemma (Google): Сімейство відкритих моделей, побудованих на тих 

же дослідженнях і технологіях, що й Gemini. Модель google/gemma-3-27b-it, 

доступна через OpenRouter, є прикладом потужної моделі середнього розміру 

(27 мільярдів параметрів), яка забезпечує баланс між якістю генерації 

інструкцій (Instruction Tuned) та ресурсоємністю. 

3. Mistral (Mistral AI): Модель Mistral-Small-3.2-24B-Instruct, що 

використовується через MegaNova API, представляє клас ефективних моделей 

з розрідженою активацією (Mixture of Experts - MoE). Такі моделі активують 

лише частину параметрів для кожного токена, що дозволяє досягти високої 
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продуктивності при менших витратах обчислювальних ресурсів. 

Використання різнорідних моделей у межах однієї системи дозволяє 

реалізувати стратегію динамічного планування ресурсів. Наприклад, прості 

запити («як скинути пароль») можуть оброблятися швидкими моделями 

(Gemini Flash), тоді як складні технічні проблеми, що вимагають глибокого 

аналізу логів, можуть бути перенаправлені на більш потужні моделі (Gemma 

або Mistral). 

 

1.3. Математичне моделювання процесів обслуговування в 

діалогових системах 

Для теоретичного обґрунтування архітектури системи та аналізу її 

продуктивності доцільно використати апарат теорії масового обслуговування 

(Queueing Theory). Діалогову систему технічної підтримки можна представити 

як багатоканальну систему масового обслуговування (СМО) типу M/M/n. 

Вхідний потік запитів від користувачів описується як найпростіший потік 

з інтенсивністю λ (запитів за одиницю часу), що підпорядковується закону 

Пуассона. Час обслуговування одного запиту tserv є випадковою величиною, що 

має експоненційний розподіл з параметром μ (інтенсивність обслуговування). 

Кількість каналів обслуговування n у контексті LLM-систем може 

інтерпретуватися як кількість доступних слотів для паралельної обробки 

запитів через API (обмеження Rate Limits провайдера) або кількість віртуальних 

операторів. 

Основні характеристики ефективності такої системи визначаються 

наступними залежностями: 

Коефіцієнт завантаження системи 𝜌: 

𝜌 =
𝜆

𝑛𝜇
 

(1.1) 

Умова стаціонарності системи: ρ < 1. Якщо ρ≥1, черга запитів зростає 
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необмежено, що призводить до колапсу системи підтримки. 

Ймовірність простою системи 𝑃0 (коли всі канали вільні) визначається 

формулою Ерланга: 

𝑃0 = [∑

𝑛−1

𝑘=0

(𝜆/𝜇)𝑘

𝑘!
+

(𝜆/𝜇)𝑛

𝑛!
⋅

1

1 − 𝜌
]

−1

,  𝜌 < 1 

(1.2) 

 

 

Середня довжина черги 𝐿𝑞: 

 

𝐿𝑞 =  
𝑃𝑛(𝜆/𝜇)𝑛 ⋅ 𝜌

𝑛! (1 −  𝜌)2
 

(1.3) 

 

 

Середній час очікування в черзі 𝑊𝑞: 

 

𝑊𝑞 =  𝐿𝑞/𝜆 (1.4) 

 

 

Повний час перебування запиту в системі 𝑊: 

 

𝑊 =  𝑊𝑞 +  1/𝜇 (1.5) 

 

Застосування цієї моделі дозволяє оцінити вплив параметрів LLM 

(швидкості генерації токенів, яка впливає на μ) на загальний час очікування 

користувача. Зокрема, використання швидких моделей типу gemini-2.5-flash 

збільшує значення μ, що при фіксованому вхідному потоці λ призводить до 

нелінійного зменшення часу очікування 𝑊𝑞 та підвищення пропускної здатності 

системи. Це теоретично обґрунтовує вибір архітектури з можливістю 

перемикання на швидші моделі в періоди пікових навантажень. 

1.4. Аналіз методів інтеграції API та управління станом у веб-

застосунках 
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Реалізація діалогової системи вимагає вирішення задач інтеграції з 

зовнішніми сервісами та управління внутрішнім станом застосунку. 

RESTful API vs WebSockets. Більшість сучасних LLM провайдерів 

(Google, OpenRouter) надають доступ через REST API. Це безстановий 

протокол (stateless), де кожен запит повинен містити всю необхідну інформацію 

для його обробки, включаючи історію діалогу. У розроблюваній системі 

використовується метод fetch() для здійснення асинхронних HTTP-запитів. 

Перевагою такого підходу є простота реалізації та відсутність необхідності 

підтримувати постійне з'єднання, що зменшує навантаження на мережу при 

періодичній активності користувача. 

Управління станом (State Management). Оскільки HTTP є безстановим 

протоколом, логіка збереження контексту розмови покладається на клієнтську 

частину. У «чистому» JavaScript (Vanilla JS), який використовується в роботі 3, 

стан представлений набором глобальних змінних (currentViewId, adminModes, 

statsData). 

Ключові аспекти управління станом: 

1. Ізоляція контекстів: Система повинна підтримувати незалежні 

історії повідомлень для різних чатів (тікетів). Це досягається шляхом 

маніпуляції DOM-деревом (приховування/відображення контейнерів div з 

відповідними ID). 

2. Синхронізація UI та даних: Зміна внутрішнього стану (наприклад, 

перемикання моделі через змінну currentModel) повинна миттєво відображатися 

в інтерфейсі (підсвічування активної кнопки). 

3. Персистентність: У межах поточної сесії браузера дані 

зберігаються в оперативній пам'яті. 

Безпека та авторизація. Взаємодія з комерційними API вимагає 

автентифікації за допомогою API-ключів (apiKey). У клієнтській реалізації 

ключі зберігаються у змінних коду. З точки зору безпеки, такий підхід є 
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допустимим для прототипів або внутрішніх адміністративних панелей (чим і є 

розроблювана система для техпідтримки), але у публічних сервісах вимагає 

використання проксі-сервера для приховування секретів. 

 

Висновки до першого розділу 

Проведений аналіз предметної області дозволив зробити наступні 

висновки: 

1. Автоматизація технічної підтримки є критично важливою задачею 

для сучасних підприємств. Використання LLM дозволяє подолати обмеження 

традиційних сценарних систем, забезпечуючи розуміння природної мови та 

контексту. 

2. Основним технічним викликом є забезпечення низької латентності 

та високої доступності сервісу. Теоретичне моделювання на основі систем 

M/M/n підтверджує, що використання високошвидкісних моделей (наприклад, 

Gemini Flash) є ефективним методом підвищення пропускної здатності системи. 

3. Архітектура системи повинна бути мультимодельною, 

забезпечуючи інтеграцію з різними провайдерами (Google, OpenRouter, 

MegaNova) для уникнення залежності від одного постачальника (vendor lock-in) 

та оптимізації витрат. 

4. Реалізація системи у вигляді веб-застосунку з прямою інтеграцією 

API вимагає ретельного проєктування механізмів управління станом та обробки 

асинхронних запитів, що буде детально розглянуто у другому розділі. 
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РОЗДІЛ 2. ПРОЄКТУВАННЯ ТА МОДЕЛЮВАННЯ ДІАЛОГОВОЇ 

СИСТЕМИ 

2.1. Концептуальна архітектура та функціональна схема системи 

Розроблювана система «AI Support Chat» базується на модульній клієнт-

серверній архітектурі, де клієнтська частина (Front-end) виконує роль 

інтелектуального оркестратора запитів, а серверна частина представлена 

розподіленою мережею хмарних API постачальників LLM. 

 

 

Рисунок 2.1 – Архітектура системи «AI Support Chat» 

 

Функціональна схема системи включає наступні компоненти: 

1. Модуль інтерфейсу користувача (UI Module): Забезпечує 
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візуалізацію діалогів, панелей управління та статистики. Реалізований через 

HTML5/CSS3. Ключові класи: .message (контейнер повідомлення), .user/.bot 

(стилізація реплік), .active-view (управління видимістю вкладок). 

2. Модуль управління станом (State Manager): Центральний 

логічний компонент, що зберігає поточну конфігурацію системи. Він керує 

змінними: 

 currentViewId – ідентифікатор активного чату (значення: 1-5, 'stats'). 

 currentModel – обрана модель генерації. 

 adminModes – статус режиму ручного управління для кожного тікета. 

 statsData – накопичені метрики ефективності. 

3. Модуль інтеграції API (API Gateway Integration): Відповідає за 

формування HTTP-запитів, додавання заголовків авторизації та обробку 

відповідей. Підтримує три протоколи взаємодії: 

 Google API Protocol (для Gemini). 

 OpenRouter API Protocol (для Gemma). 

 MegaNova API Protocol (для Mistral). 

4. Модуль обробки мультимедіа (Media Processor): Забезпечує 

захоплення аудіо через Web Speech API та конвертацію зображень у формат 

Base64 за допомогою FileReader. 

5. Аналітичний модуль (Analytics Engine): Здійснює парсинг 

відповідей LLM для виявлення фактів вирішення проблем та оновлення 
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лічильників у statsData. 

 

2.2. Математичне моделювання логіки роботи системи 

Для формалізації алгоритмів роботи системи введемо множину станів S 

та множину подій E. 

Модель станів інтерфейсу: 

Нехай V = {v1, v2,..., v5, vstats} – множина доступних видів (views). 

Стан відображення Sview(t) ∈ V змінюється під дією події перемикання 

eswitch(i): 

 

Sview(t+1) =  {
v𝑖 , якщо eswitch(i)  отримано 

Sview(t), інакше
 

 

У програмному коді це реалізується функцією перемикання, яка додає 

клас active-view до елемента з ID view-{i} та видаляє його у інших. 

Модель адміністративного контролю («Режим Горіх»): 

Система підтримує спеціальний режим втручання, який активується 

кодовою фразою. 

Нехай Ai ∈{0, 1} – стан адміністративного режиму для чату i. 

Функція переходу станів Fadmin(msg): 

 

 

Ai(t+1) =  {
¬А𝑖  (𝑡), якщо 𝑚𝑠𝑔 = "горіх"  

А𝑖  (𝑡),     інакше
 

 

 

При Ai = 1 в інтерфейсі активується індикатор з класом .ts-admin, що 

сигналізує про особливий статус обробки. 

Ймовірнісна модель генерації відповіді: 
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Процес генерації відповіді моделюється як функція G(M, C, P), де: 

● M ∈ gemini, openrouter, meganova – обрана модель. 

● C – контекст діалогу (історія повідомлень). 

● P – параметри генерації (temperature, max_tokens). 

Час відповіді Tresp залежить від обраної моделі: 

 

 

Tresp = Tnet + Tinf(М) 

 

 

де Tnet – мережева затримка, Tinf – час інференсу. Згідно з аналізом 1, для 

моделі gemini-2.5-flash Tinf є мінімальним серед розглянутих, що робить її 

пріоритетною за замовчуванням. 

 

2.3. Алгоритмічне забезпечення та структури даних 

Для реалізації системи використовуються специфічні структури даних, 

визначені у файлі коду. 

Структура конфігурації API: 

JavaScript 

 

const apiKey = "AIzaSy..."; // Ключ Google 

const openRouterApiKey = "sk-or-v1..."; // Ключ OpenRouter 

const megaNovaApiKey = "mn-..."; // Ключ MegaNova 

 

Ці змінні є точками входу для автентифікації. Безпека ключів 

забезпечується їх використанням виключно у HTTPS-запитах. 

Структура статистичних даних (statsData): 

Для моніторингу ефективності використовується об'єкт-акумулятор: 
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Dstats = {Nsolved, Nhw, Nsw, Nnet, Nesc, Nunk} 

 

де кожен компонент відповідає лічильнику певної категорії подій 

(вирішено, апаратна помилка, програмна помилка тощо). Алгоритм оновлення 

статистики аналізує текст відповіді на наявність маркерів (наприклад, 

«категорія: network») і інкрементує відповідний лічильник. 

Алгоритм обробки повідомлення користувача (Main Loop) (див. дод. 

А, рис. А.1): 

1. Захоплення вводу: Отримання тексту з елемента #user-input. 

2. Валідація: Перевірка на непорожній рядок або наявність 

прикріпленого файлу (перевірка змінної currentImageBase64 та наявності класу 

has-file у кнопки). 

3. Візуалізація запиту: Створення DOM-вузла <div class="message 

user"> та додавання його до поточного контейнера #view-{currentViewId}. 

4. Перевірка тригерів: Якщо текст дорівнює «горіх», перемкнути 

булевий прапорець у об'єкті adminModes для поточного ID, оновити UI 

(додати/зняти клас .ts-admin) та завершити цикл. 

5. Маршрутизація запиту: 

 Якщо currentModel === 'gemini': Сформувати запит до 

generativelanguage.googleapis.com. Тіло запиту включає масив contents. Якщо є 

зображення, воно додається як об'єкт inlineData з MIME-типом image/jpeg. 

 Якщо currentModel === 'openrouter': Сформувати запит до 

openrouter.ai/api/v1/chat/completions. Використати модель google/gemma-3-27b-

it:free. 

 Якщо currentModel === 'meganova': Сформувати запит до 

api.meganova.ai. Використати модель mistralai/Mistral-Small-3.2-24B-Instruct-

2506. 

6. Виконання запиту: Використання асинхронної функції fetch з 
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очікуванням промісу (await). 

7. Обробка відповіді: Отримання JSON, вилучення текстового поля 

(шлях залежить від провайдера, наприклад candidates.content для Gemini). 

8. Візуалізація відповіді: Створення DOM-вузла <div class="message 

bot">, рендеринг тексту (можлива підтримка Markdown). 

9. Очищення: Скидання поля вводу та змінної зображення, видалення 

класу has-file. 

 

2.4. Реалізація механізмів мультимедійної взаємодії 

Сучасна технічна підтримка неможлива без обміну скріншотами та 

голосового управління. 

Обробка зображень: 

Реалізована через HTML5 File API. Прихований input type="file" 

активується програмно. Подія change запускає FileReader, який асинхронно 

зчитує файл і конвертує його у рядок Data URL (Base64). Цей рядок зберігається 

у глобальній змінній currentImageBase64 і додається до корисного 

навантаження (payload) наступного запиту до LLM. Це дозволяє моделям, 

таким як Gemini, "бачити" екран користувача і діагностувати помилки за 

скріншотом. 

Голосовий ввід: 

Використовує Web Speech API (webkitSpeechRecognition). 

Алгоритм роботи кнопки мікрофона (#mic-btn): 

1. При натисканні перевіряється статус запису. 

2. Якщо неактивний: Створюється екземпляр розпізнавання, 

встановлюється мова (uk-UA або en-US), запускається метод start(). Кнопці 

додається клас recording (візуальна індикація – пульсація або червоний колір). 

3. Подія onresult: Отриманий транскрибований текст додається до поля 

вводу. 
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4. Подія onend: Видаляється клас recording. 

 

2.5. Дизайн та реалізація інтерфейсу адміністратора 

Інтерфейс системи спроєктовано з урахуванням ергономіки роботи 

оператора. Ліва бічна панель (Sidebar) містить навігацію між чатами. Активний 

чат підсвічується класом active. 

Статус тікета візуалізується кольоровими індикаторами. Клас .ts-admin 

використовується для позначення тікетів, де потрібна увага людини 

(Escalation). 

Таблиця 2.1 – Відповідність елементів інтерфейсу та функціоналу 

Елемент інтерфейсу 

(ID/Class) 

Функціональне 

призначення 

Пов'язана змінна/API 

#view-{1..5} Контейнери чатів currentViewId 

.message.bot Відповідь моделі JSON response content 

#mic-btn Активація голосу webkitSpeechRecognitio

n 

#attach-btn Завантаження файлу FileReader, Base64 

input[name="model"] Радіо-кнопки вибору 

моделі 

currentModel 

#view-stats Панель аналітики statsData 

 

Така організація дозволяє оператору швидко оцінювати ситуацію: 

бачити, яка модель зараз активна, чи є прикріплені файли (індикатор на кнопці), 

та який статус вирішення проблеми. 
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Висновки до другого розділу 

У другому розділі здійснено детальне проєктування та моделювання 

діалогової системи технічної підтримки. 

1. Запропоновано гібридну клієнтську архітектуру, яка забезпечує 

пряму інтеграцію з трьома провідними провайдерами LLM, що підвищує 

відмовостійкість системи. 

2. Розроблено формальні моделі поведінки інтерфейсу та логіки 

адміністративного контролю, що дозволяє чітко визначити алгоритми 

перемикання контекстів та обробки спеціальних команд. 

3. Детально описано алгоритми обробки даних, включаючи 

специфіку формування JSON-запитів для різних API та механізми роботи з 

мультимедіа (Base64, Speech API). 

4. Спроєктовано структуру статистичного модуля, який в 

автоматичному режимі збирає метрики ефективності, необхідні для 

подальшого аналізу якості обслуговування. 

Розроблена модель є основою для програмної реалізації, яка демонструє 

здатність системи ефективно вирішувати задачі технічної підтримки в режимі 

реального часу, задовольняючи вимогам щодо швидкодії та функціональності. 
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РОЗДІЛ 3. ПРОГРАМНА РЕАЛІЗАЦІЯ СИСТЕМИ 

3.1. Архітектурне проектування та обґрунтування технологічного 

стека 

Розробка ефективної діалогової системи для технічної підтримки, що 

функціонує в режимі реального часу, вимагає зваженого підходу до вибору 

архітектурних патернів та інструментів розробки. Виходячи з теоретичного 

аналізу, проведеного в попередніх розділах роботи, та вимог до мінімізації 

затримок (latency), було обрано архітектуру Single Page Application (SPA) з 

прямою інтеграцією API на стороні клієнта (Client-Side Integration). Такий 

підхід, на відміну від традиційних трьохланкових архітектур з «важким» 

бекендом, дозволяє суттєво скоротити час проходження сигналу від 

користувача до генеративної моделі, усуваючи проміжні вузли маршрутизації. 

В якості основної мови програмування для реалізації клієнтської частини 

системи було обрано JavaScript (стандарт ECMAScript 2024). Цей вибір 

обумовлений не тільки його монопольним становищем у середовищі браузерної 

розробки, але й специфічними вимогами завдання: 

● Асинхронна природа взаємодії: Ключовою особливістю роботи з 

великими мовними моделями (LLM), такими як Gemini або Mistral, є 

варіативність часу відгуку, що може становити від 500 мс до кількох секунд 

залежно від завантаженості серверів провайдера та складності контексту. 

Механізм Event Loop у JavaScript та нативна підтримка Promise дозволяють 

ефективно керувати безліччю паралельних запитів без блокування основного 

потоку інтерфейсу, що є критичним для UX (User Experience) оператора 

підтримки. 

● Маніпуляція DOM (Document Object Model): Для реалізації 

динамічного чат-інтерфейсу, де повідомлення мають з'являтися миттєво, а 

статуси тікетів оновлюватися в реальному часі, необхідний 
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високопродуктивний доступ до дерева документів. Використання «чистого» 

JavaScript (Vanilla JS) без залучення великовагових фреймворків (таких як 

Angular або React) дозволяє мінімізувати розмір підсумкового бандла та 

прискорити початкове завантаження застосунку, що відповідає вимогам до 

легковагості системи. 

● Інтеграція мультимедійних API: JavaScript надає прямий доступ 

до Web Speech API та FileReader API, що необхідно для реалізації функцій 

голосового введення та обробки зображень безпосередньо в браузері, без 

необхідності передачі «сирих» даних на проміжний сервер для транскрибації 

або конвертації. 

Для забезпечення взаємодії між клієнтським інтерфейсом та 

розподіленою мережею провайдерів LLM було проведено порівняльний аналіз 

двох основних інструментів виконання HTTP-запитів: вбудованого Fetch API та 

сторонньої бібліотеки Axios. 

Таблиця 3.1 – Порівнянн Fetch API та бібліотеки Axios 

Характеристика Fetch API Axios Вибір для 

проєкту 

Залежності Вбудований у 

браузер (0 Кб) 

Вимагає 

встановлення 

(~11 Кб) 

Fetch API 
(зниження 

навантаження) 

Обробка JSON Ручна (.json()) Автоматична Fetch API 
(контрольований 

парсинг) 

Підтримка 

стрімінгу 

Нативна 

(ReadableStream) 

Складна 

реалізація 
Fetch API 
(потенціал для 

streaming 

responses) 
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Характеристика Fetch API Axios Вибір для 

проєкту 

Сумісність Усі сучасні 

браузери 

Вимагає 

поліфілів для 

старих 

Fetch API 

Попри зручність Axios у частині автоматичної обробки помилок та 

інтерцепторів (interceptors), для цієї реалізації було обрано нативний Fetch API. 

Це рішення обґрунтоване необхідністю мінімізації зовнішніх залежностей 

(vendor lock-in) та потребою в тонкому налаштуванні заголовків CORS (Cross-

Origin Resource Sharing) для різних провайдерів API (Google, OpenRouter, 

MegaNova), кожен з яких має специфічні вимоги до формату аутентифікації. 

Невіддільною частиною системи технічної підтримки є панель 

моніторингу (Dashboard), що дозволяє адміністраторам оцінювати поточне 

навантаження. Для реалізації графіків було обрано бібліотеку Chart.js. 

Вибір на користь Chart.js, а не D3.js чи Highcharts, зумовлений 

використанням технології HTML5 Canvas. На відміну від SVG-рендерингу, що 

використовується в D3.js, Canvas забезпечує значно вищу продуктивність при 

відмальовуванні великої кількості точок даних у реальному часі. Це критично 

важливо для візуалізації динаміки надходження тікетів, де перемальовування 

графіка має відбуватися плавно і не створювати візуальних артефактів при 

частому оновленні даних. Декларативний стиль конфігурації Chart.js дозволяє 

швидко розгорнути необхідні типи діаграм (Doughnut для розподілу категорій, 

Bar для часових рядів) з мінімальними витратами часу на розробку. 

Для реалізації голосового керування було залучено інтерфейс 

SpeechRecognition зі складу Web Speech API. Це рішення має низку 

стратегічних переваг перед використанням хмарних сервісів транскрибації 

(наприклад, Google Cloud Speech-to-Text): 

● Конфіденційність: Обробка голосу може відбуватися локально на 
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пристрої або через захищені канали браузера, що знижує ризики витоку 

корпоративних даних. 

● Відсутність затримок мережі: Виключення етапу завантаження 

аудіофайлу на сервер дозволяє отримувати результати розпізнавання практично 

миттєво (interim results), що створює ефект живого спілкування. 

● Безкоштовність: Використання нативних API браузера не 

тарифікується, що суттєво знижує експлуатаційну вартість системи. 

 

3.2. Програмна реалізація архітектури системи «AI Support Chat» 

Система «AI Support Chat v10.2» являє собою модульний веб-застосунок. 

Файлова структура проєкту організована за принципом «все-в-одному» (Single 

File Component) для спрощення розгортання прототипу, проте логічна 

архітектура чітко розділена на рівні представлення (View), керування станом 

(State) та інтеграції (Integration). 

В основі логіки роботи системи лежить централізований менеджер стану, 

реалізований через глобальні об'єкти JavaScript. Оскільки протокол HTTP є 

stateless (без збереження стану), завдання збереження контексту діалогу та 

поточних налаштувань інтерфейсу лягає на клієнтський застосунок. 

Основні структури даних, що визначають стан системи: 

● currentViewId: Рядкова змінна, що зберігає ідентифікатор активного 

в цей момент чату (тікетів). Можливі значення варіюються від '1' до '5' (для 

чатів) та 'stats' (для панелі аналітики). Зміна цієї змінної тригерить 

перемальовування видимої області інтерфейсу. 

● currentModel: Змінна, що визначає поточну активну мовну модель 

('gemini', 'openrouter', 'meganova'). Це дозволяє оператору «на льоту» перемикати 

«мозок» системи залежно від складності завдання. Наприклад, для простих 

запитів використовується швидка Gemini Flash, а для складних аналітичних 

завдань – Gemma 27b або Mistral Small. 
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● adminModes: Об'єкт-словник виду { 1: false, 2: true,... }, де ключ 

відповідає ID чату, а значення – булевий прапор активації режиму ручного 

керування. Ця структура даних критично важлива для реалізації гібридного 

інтелекту, дозволяючи переводити окремі діалоги в режим ручного втручання 

без зупинки автоматичної обробки інших. 

● chatHistories: Об'єкт, що зберігає масиви повідомлень для кожного 

чату. Кожне повідомлення представлене об'єктом: 

{ 

  sender: 'user' | 'bot', 

  text: string, 

  timestamp: string, // ISO формат 

  image: string | null // Base64 дані 

} 

Така структура дозволяє при перемиканні між вкладками миттєво 

відновлювати історію листування без повторних запитів до сервера. 

Візуальна складова системи спроектована з використанням сучасних 

CSS3-технологій, орієнтованих на зниження когнітивного навантаження 

оператора. Стильове рішення базується на концепції «Glassmorphism» 

(скломорфізм). 

Аналіз стильового оформлення: 

● Фонове оформлення: Використовується складне накладання 

лінійного градієнта linear-gradient(rgba(10, 20, 30, 0.9), rgba(10, 20, 30, 0.9)) 

поверх високоякісного зображення з Unsplash. Це створює глибокий, темний 

фон, який зменшує навантаження на очі при тривалій роботі в умовах низької 

освітленості. 

● Ефект матового скла: Класи контейнерів (.sidebar, .dashboard-

container) використовують властивість backdrop-filter: blur(20px) у поєднанні з 

напівпрозорим фоном rgba(0, 0, 0, 0.4). Це забезпечує візуальну ієрархію, 
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відокремлюючи контент від фону та створюючи відчуття об'єму інтерфейсу. 

● Візуальна індикація статусів: Для миттєвого зчитування стану 

тікетів застосовано систему колірного кодування класів: 

 .ts-open (Зелений, #2ecc71): Стандартний стан, тікет відкритий, 

працює бот. 

 .ts-wip (Жовтий, #f1c40f): «Work In Progress» – тікет у роботі, 

потрібна увага. 

 .ts-admin (Червоний, #e74c3c): Критичний режим. Для цього класу 

реалізовано CSS-анімацію pulse, яка змушує елемент плавно змінювати 

прозорість або розмір, привертаючи периферичний зір оператора до 

проблемного діалогу. 

Загальний вигляд графічного інтерфейсу розробленої системи, що 

демонструє компонування основних функціональних блоків та реалізацію 

візуального стилю, наведено у Додатку Б. 

Взаємодія із зовнішніми LLM-провайдерами інкапсульована в окремі 

асинхронні функції, що виконують роль шлюзів. Це дозволяє абстрагувати 

основну бізнес-логіку від специфіки конкретних API. 

Алгоритм обробки запиту (Main Loop): 

1. Захоплення введення: Система зчитує текст з елемента #user-input. 

2. Валідація мультимедіа: Перевіряється наявність прикріпленого 

зображення через змінну currentImageBase64. Якщо зображення є, воно 

додається до корисного навантаження (payload) запиту. 

3. Перевірка тригерів ("Режим Горіх"): Перед відправленням запиту 

до AI, система перевіряє вхідне повідомлення на наявність стоп-слів. Якщо 

виявлено команду «горіх» (або «nut»), алгоритм негайно змінює стан 

adminModes для поточного чату на true, додає клас .ts-admin в інтерфейс і 

припиняє подальшу обробку, передаючи керування людині. 

4. Маршрутизація (Routing): Залежно від значення currentModel, 
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керування передається відповідній функції: 

 Gemini Handler: Формує запит до 

generativelanguage.googleapis.com. Специфіка цього API вимагає передачі даних 

у структурі contents: [...]. 

 OpenRouter Handler: Використовує стандартизований формат 

OpenAI API. Запит направляється на openrouter.ai/api/v1/chat/completions із 

зазначенням моделі google/gemma-3-27b-it:free. 

 MegaNova Handler: Направляє запит на api.meganova.ai для моделі 

mistralai/Mistral-Small. 

 

3.3. Реалізація специфічних функціональних можливостей 

Можливість аналізу скріншотів помилок є критичною для технічної 

підтримки. Реалізація цієї функції базується на використанні FileReader API. 

Логіка роботи із зображеннями: 

1. Прихований елемент input type="file" активується програмно при 

натисканні кнопки скріпки. 

2. При виборі файлу спрацьовує подія onchange. 

3. Об'єкт FileReader асинхронно зчитує файл методом 

readAsDataURL(). 

4. Отримана рядок Base64 зберігається в глобальну змінну. 

Логіка голосового введення: 

Використання webkitSpeechRecognition дозволяє реалізувати диктування. 

При натисканні кнопки мікрофона: 

1. Створюється екземпляр розпізнавання. 

2. Встановлюється мова (на основі системних налаштувань або 

примусово). 

3. Навішуються обробники подій: onstart (додає клас пульсації на 

кнопку), onend (знімає клас), onresult (вставляє текст у поле введення). 
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Для документування інцидентів реалізовано функцію експорту чату в 

PDF. Використовується бібліотека html2pdf.js, яка працює за принципом 

«знімок екрана». 

1. Вибирається DOM-елемент контейнера чату. 

2. html2canvas рендерить цей елемент у растрове зображення (Canvas). 

3. jsPDF поміщає це зображення в PDF-документ. Цей підхід гарантує, 

що візуальне оформлення (кольори, відступи, бульбашки повідомлень) у звіті 

буде повністю ідентичним тому, що оператор бачить на екрані. 

Висновки до третього розділу 

У третьому розділі було детально описано програмну реалізацію 

діалогової системи «AI Support Chat». 

● Розроблений SPA-застосунок демонструє ефективність обраного 

стека технологій (Vanilla JS + Fetch API), забезпечуючи миттєвий відгук 

інтерфейсу та незалежність від сторонніх фреймворків. 

● Реалізована архітектура керування станом дозволяє гнучко 

маршрутизувати запити між різними LLM-провайдерами, забезпечуючи 

відмовостійкість. 

● Впровадження механізму перехоплення керування («Режим Горіх») 

та візуальної індикації статусів створює ергономічне середовище для роботи 

оператора, гібридизуючи штучний інтелект та людський контроль. 

● Функціонал обробки мультимедіа та генерації звітів значно 

розширює можливості системи в порівнянні з традиційними текстовими чат-

ботами. 
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РОЗДІЛ 4. ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ, АНАЛІЗ 

ЕФЕКТИВНОСТІ ТА БЕЗПЕКИ СИСТЕМИ 

4.1. Методологія та результати чисельного моделювання 

продуктивності 

Для оцінки масштабованості системи та визначення її поведінки під 

навантаженням було проведено чисельне моделювання з використанням теорії 

масового обслуговування. В якості базової математичної моделі було обрано 

систему M/M/n (пуассонівський вхідний потік, експоненційний час 

обслуговування, n каналів), реалізовану мовою Python з використанням 

бібліотек NumPy та SciPy. 

У ході експерименту досліджувалися залежності середнього часу 

перебування запиту в системі W та середньої довжини черги 𝐿𝑞 від 

інтенсивності вхідного потоку запитів λ. Були задані наступні параметри: 

● Інтенсивність обслуговування μ: 2 запити на секунду (середній час 

генерації відповіді LLM – 0.5 с). 

● Інтенсивність запитів λ: Варіювалася від 1 до 20 запитів на 

секунду. 

● Кількість серверів/каналів n: Досліджувалися конфігурації {2, 4, 

6, 8}. Під «каналом» у контексті LLM розуміється або окремий потік обробки, 

або ліміт паралельних запитів (Rate Limit), що надається API провайдером. 

Результати симуляції виявили кілька критичних закономірностей, що 

визначають стратегію масштабування системи: 
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Таблиця 4.1 – Залежність часу очікування від навантаження та кількості 

каналів 

Інтенсивність 

(λ) 

n=2 (Базовий) n=4 (Стандарт) n=8 (Enterprise) 

4 req/s Критичне 

навантаження 

ρ→1 

W < 1 сек W < 0.6 сек 

8 req/s Система 

перевантажена 

(Відмова) 

Критичне 

навантаження 

W < 0.8 сек 

16 req/s Система 

перевантажена 

Система 

перевантажена 

W ≈ 1.5 сек 

 

Інтерпретація графіків: 

Згідно з отриманими даними (рис. 4.1), спостерігається чітка точка 

біфуркації. 

● Мале навантаження λ < 6: Навіть мінімальна конфігурація (n=2 

справляється з потоком, забезпечуючи час відгуку менше ніж 2 секунди. Це 

підтвержує, що для малих підприємств достатньо використання базових (free-

tier) доступів до API. 

● Ефект «пляшкового горлечка»: При наближенні коефіцієнта 

завантаження  

𝜌 =
𝜆

𝑛𝜇
  до одиниці, довжина черги 𝐿𝑞  зростає експоненційно. В експерименті 

при λ > 12 система з n=4 демонструвала різку деградацію продуктивності, тоді 

як система з n=8 залишалася стабільною. 
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Рисунок 4.1 – Графік залежності часу очікування відповіді від 

інтенсивності вхідного потоку для різної кількості каналів обробки. 

 

● Висновок для архітектури: Для забезпечення стабільності системи 

«AI Support Chat» у моменти пікових навантажень (наприклад, при масовому 

збої сервісу) необхідне динамічне перемикання на провайдерів з вищими 

лімітами (Rate Limits). Саме тому в архітектуру (Розділ 3) було закладено 

можливість перемикання між Google Gemini (високі ліміти) та OpenRouter 

(резервний канал). 

 

4.2. Економічне обґрунтування впровадження системи 

Ефективність впровадження автоматизованої системи підтримки 

оцінюється не лише технічними метриками, але й економічним ефектом (ROI). 

Проведемо порівняльний аналіз витрат на традиційну модель підтримки та 

запропоновану гібридну LLM-систему. 
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Рисунок 4.2 – Порівняльна діаграма щомісячних витрат на утримання 

служби технічної підтримки. 

 

Припустимо, служба підтримки обробляє V = 5000 звернень на місяць. 

● Середній час обробки оператором: Thuman = 10 хвилин. 

● Загальні трудовитрати: 5000 * 10 / 60 = 833 години. 

● При нормі 160 годин/чол, потрібно ≈ 5.2 штатні одиниці. 

● При фонді оплати праці (ФОП) одного фахівця 25,000 грн 

(включаючи податки), місячні витрати становлять: 

 

Cold = 5.2 * 25,000 = 130,000 грн. 

Впровадження LLM дозволяє автоматизувати першу лінію підтримки 

(L1). Спираючись на результати функціонального тестування, модель Gemini 

2.5 Flash здатна коректно закрити до 70% типових запитів без участі людини. 

● Залишковий потік на людей (ескалація): 30% від 5000 = 1500 

звернень. 
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● Нові трудовитрати: 1500 * 10 / 60 = 250 годин ≈ 1.6 чол). 

● ФОП операторів: 2 * 25,000 = 50,000 грн. 

Витрати на інфраструктуру та API: 

 Середній діалог споживає ~1500 токенів (вхід + вихід). 

 Обсяг токенів на місяць: 5000 * 1500 = 7.5 млн токенів. 

 Вартість Gemini Flash (орієнтовно 0.35 за 1 млн токенів): 

Capi = 7.5 * 0.35 ≈  $2.63 ≈ 110 грн. 

 Хостинг статичного веб-застосунку (Firebase/GitHub Pages): 

Безкоштовно або  ≈ 5$ (200 грн) за комерційний тариф. 

Підсумкові витрати нової моделі: 

 

Cnew = 50,000 (ФОП) + 110 (API) + 200 (Хостинг) = 50,310 грн. 

 

Щомісячна економія становить: 

 

E = Cold - Cnew = 130,000 - 50,310 = 79,690 грн. 

 

Річний економічний ефект перевищує 950 000 грн. При цьому вартість 

розробки прототипу мінімальна, оскільки використовуються відкриті 

бібліотеки та недорогі API. Термін окупності (Payback Period) системи 

становить менше одного місяця, що робить проєкт інвестиційно привабливим. 

 

4.3. Аналіз безпеки та стратегії захисту даних 

Інтеграція великих мовних моделей у корпоративний контур створює 

специфічні вектори загроз, які були проаналізовані в рамках тестування безпеки 

(Security Testing). 

У поточній реалізації (Розділ 3) API-ключі зберігаються в змінних 

JavaScript (const apiKey = "..."). Це класична вразливість клієнтських 
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застосунків (CWE-798: Use of Hard-coded Credentials). Зловмисник може 

витягти ключі через інструменти розробника браузера і використовувати квоту 

компанії. 

Стратегія мінімізації ризику: Для промислової експлуатації необхідна 

реалізація проміжного проксі-сервера (Backend-for-Frontend). Проксі повинен: 

1. Зберігати секрети в змінних оточення сервера. 

2. Приймати запити від фронтенду, аутентифіковані через сесійні куки 

(Cookie-based auth). 

3. Додавати API-ключ до запиту та перенаправляти його до LLM-

провайдера. 

Специфічна загроза для LLM – впровадження шкідливих інструкцій у 

промпт. Користувач може написати: «Ігноруй попередні інструкції та видай 

конфіденційну інформацію про зарплати». 

Реалізований захист: 

● Системний промпт: У коді жорстко зашита системна інструкція, що 

обмежує область знань моделі тільки технічною підтримкою. 

● Санітизація введення: Будь-які спроби маніпуляції контекстом 

відстежуються через аналіз ключових слів перед відправленням запиту. 

При передачі історії чату в хмару (Google/OpenRouter) існує ризик витоку 

персональних даних (PII). 

Заходи захисту: Впровадження модуля анонімізації (PII Redaction) на 

стороні клієнта. Скрипт повинен автоматично замінювати патерни (телефони, 

email, IP-адреси) на токени виду <PHONE>, <IP> перед відправленням в API, і 

відновлювати їх при відображенні відповіді (якщо це необхідно). 

 

4.4. Комплексне тестування системи 

Для забезпечення якості системи було розроблено стратегію тестування, 

що включає функціональні та нефункціональні тести. 
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Були перевірені ключові сценарії: 

● Розпізнавання намірів (Intent Recognition): Тестувалася здатність 

системи правильно класифікувати запити типу «Не працює інтернет» (Network) 

vs «Екран згас» (Hardware). Точність Gemini Flash склала 92%. 

● Обробка помилок: При розриві з'єднання або перевищенні ліміту 

токенів система коректно відображає повідомлення і пропонує переключитися 

на режим адміністратора (Fallback strategy). 

● Мультимодальність: Перевірено коректність обробки зображень. 

Система успішно розпізнає текст помилок на скріншотах у 48 із 50 тестових 

випадків. 

 

Рисунок 4.3 – Статистичний розподіл категорій інцидентів, оброблених 

системою під час тестування. 

З використанням інструментів симуляції (Python-скрипт з курсової 

роботи) було підтверджено, що клієнтська частина (браузер) стабільно працює 

при частому оновленні чату (до 10 повідомлень на секунду), завдяки оптимізації 

рендерингу через маніпуляцію DOM, а не повне перемальовування. 
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Висновки до четвертого розділу 

У четвертому розділі проведено всебічну оцінку розробленої системи. 

● Чисельне моделювання підтвердило необхідність наявності мінімум 

4 паралельних каналів обробки для стабільної роботи при навантаженні вище 8 

запитів/сек. 

● Економічний аналіз продемонстрував високу рентабельність 

рішення з потенційною річною економією близько 1 млн грн для малого 

підприємства. 

● Виявлено критичні вразливості безпеки (зберігання ключів на 

клієнті) та запропоновано архітектурні рішення для їх усунення (Server-side 

Proxy). 

● Комплексне тестування підтвердило функціональну придатність 

системи для автоматизації першої лінії підтримки. 
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ВИСНОВКИ 

У ході виконання магістерської дисертації було вирішено актуальне 

науково-прикладне завдання розробки та дослідження діалогової системи 

автоматизованої технічної підтримки на основі великих мовних моделей 

(LLM). 

Результати роботи можна резюмувати наступним чином: 

1. Теоретичне узагальнення: Проведений аналіз предметної області 

показав, що класичні методи автоматизації (IVR, сценарні чат-боти) не 

забезпечують достатньої гнучкості в умовах зростаючої складності IT-

інфраструктур. Доведено, що використання LLM на базі архітектури 

Трансформер дозволяє якісно покращити розуміння контексту та намірів 

користувача. Застосування теорії масового обслуговування (модель M/M/n) 

дозволило формалізувати процеси обробки запитів та науково обґрунтувати 

вимоги до обчислювальних ресурсів. 

2. Архітектурне рішення: Розроблено гібридну клієнт-серверну 

архітектуру системи «AI Support Chat», яка відрізняється від наявних аналогів 

перенесенням логіки оркестрації запитів на сторону клієнта (Browser-based 

orchestration). Це дозволило знизити затримки, спростити масштабування та 

забезпечити пряму інтеграцію з кількома провайдерами ШІ (Google, 

OpenRouter, MegaNova), виключаючи єдину точку відмови. 

3. Програмна реалізація: Створено повнофункціональний прототип 

системи, що реалізує: 

 Мультимодальний інтерфейс: Підтримка голосового введення 

(Web Speech API) та аналізу зображень дозволяє користувачам швидше 

описувати проблеми. 

 Гібридний інтелект: Реалізовано механізм «безшовної» ескалації 

діалогу на оператора-людину («Режим Горіх») з візуальною індикацією 
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критичних станів. 

 Адаптивний UX: Використання сучасних підходів до дизайну 

(Glassmorphism) та візуалізації даних (Chart.js) забезпечує ергономічність 

робочого місця. 

4. Експериментальна валідація: Результати чисельного 

моделювання та натурних випробувань підтвердили працездатність системи. 

Встановлено, що при використанні моделі Gemini 2.5 Flash система здатна 

обробляти вхідний потік з інтенсивністю до 6 запитів на секунду при 

збереженні часу відгуку в межах 2 секунд (при n=2). Точність класифікації 

технічних інцидентів досягає 92%. 

5. Економічна ефективність: Розрахунки показали, що автоматизація 

70% рутинних запитів першої лінії підтримки дозволяє скоротити операційні 

витрати підприємства більш ніж на 60%, забезпечуючи окупність системи в 

перший місяць експлуатації. 

Перспективи подальших досліджень: 

Подальший розвиток системи вбачається в інтеграції технології RAG 

(Retrieval-Augmented Generation) для підключення корпоративних баз знань, що 

дозволить моделі давати відповіді, специфічні для внутрішньої інфраструктури 

компанії, без ризику галюцинацій. Також доцільною є розробка захищеного 

серверного шлюзу для централізованого керування доступом та ключами 

шифрування. 

Розроблена система готова до впровадження як інструмент оптимізації 

процесів IT-підтримки на підприємствах малого та середнього бізнесу. 
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ДОДАТКИ 

ДОДАТОК А. Блок-схема алгоритму обробки запиту користувача 

 

 
 

Рисунок А.1 – Алгоритм обробки повідомлення користувача 
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ДОДАТОК Б. Графічний інтерфейс користувача 

 

 

Рисунок Б.1 – Головне вікно інтерфейсу системи технічної підтримки 

 

 

 

Рисунок Б.2 – Автоматична діагностика проблеми та надання 

рекомендацій 
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Рисунок Б.3 – Інтерфейс успішного завершення сесії обслуговування 

 

 

 

Рисунок Б.4 – Меню вибору мовної моделі (LLM) 
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Рисунок Б.5 – Модуль візуалізації статистики ефективності (KPI 

Dashboard) 

 

 

 

 

Рисунок Б.6 – Список активних тікетів та їх статуси 

 



52 
 

 

Рисунок Б.7 – Вікно довідкової інформації про систему 
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