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АНОТАЦІЯ 

Бендюг Дмитро Михайлович. Дослідження проблем впровадження 

систем точного землеробства. – Кваліфікаційна робота на правах рукопису. 

Кваліфікаційна робота на здобуття освітнього ступеня магістр за 

спеціальністю 208 Агроінженерія. – Поліський національний університет, 

Житомир, 2025. 

В роботі розглянуто сучасні проблеми впровадження систем точного 

землеробства, які набувають все більшого значення в умовах необхідності 

підвищення ефективності агровиробництва та раціонального використання 

природних ресурсів.  

Проаналізовано ключові бар’єри та недоліки, що стримують поширення 

технологій систем точного та сучасного землеробства, зокрема високу вартість 

обладнання та програмного забезпечення, недостатній рівень технічної 

підготовки аграріїв, інженерного персоналу та операторів, обмежений доступ до 

якісних цифрових даних, а також інфраструктурні проблеми у сільській 

місцевості. Окрему увагу приділено питанням інтеграції цифрових технологій у 

традиційні виробничі процеси, складнощам із стандартизацією даних, 

забезпеченням кібербезпеки та економічній доцільності впровадження інновацій 

для господарств різного масштабу.  

Наведено можливі шляхи вирішення зазначених проблем, серед яких 

робота в умовах воєнного стану та обмеження доступу до глобальної системи 

позиціонування, розвиток освітніх програм, удосконалення технічної 

інфраструктури та підвищення доступності цифрових рішень. Зроблено 

висновок, що успішне впровадження систем точного землеробства потребує 

комплексного підходу та взаємодії між наукою, агробізнесом. 

Ключові слова: система, точне землеробство, база даних, картограма, 

системний підхід. 
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ANNOTATION 

Bendiuh Dmytro. Study of the Problems of Implementing Precision Agriculture 

Systems. – Qualification work in manuscript form. 

Master’s qualification work for obtaining the educational degree of Master in the 

specialty 208 Agroengineering. – Polissia National University, Zhytomyr, 2025. 

The work examines the current problems associated with the implementation of 

precision agriculture systems, which are becoming increasingly significant in the 

context of improving agricultural production efficiency and ensuring the rational use of 

natural resources. The key barriers and shortcomings that hinder the widespread 

adoption of precision and modern farming technologies are analyzed, including the high 

cost of equipment and software, insufficient technical training of farmers, engineering 

personnel and operators, limited access to high-quality digital data, as well as 

infrastructural challenges in rural areas. Special attention is given to the integration of 

digital technologies into traditional production processes, difficulties related to data 

standardization, ensuring cybersecurity, and the economic feasibility of implementing 

innovations for farms of various scales. 

Possible ways to address the identified problems are outlined, including 

operating under martial-law conditions and restrictions on access to the global 

positioning system, the development of educational programs, improvement of 

technical infrastructure, and the increased accessibility of digital solutions. It is 

concluded that the successful implementation of precision agriculture systems requires 

a comprehensive approach and effective cooperation between science and agribusiness. 

Keywords: system, precision agriculture, database, map chart, systemic 

approach. 
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ВСТУП 

Актуальність теми. Сучасний етап розвитку аграрного виробництва 

характеризується необхідністю підвищення ефективності використання 

земельних ресурсів, зменшення виробничих витрат та мінімізації негативного 

впливу на довкілля. В умовах глобальних кліматичних змін, зростання цін на 

паливо та матеріально-технічні ресурси, а також підвищених вимог до якості 

продукції та продовольчої безпеки, впровадження систем точного землеробства 

стає одним із ключових напрямів розвитку агросектору. Точне землеробство дає 

можливість оптимізувати технологічні процеси, забезпечувати раціональне 

внесення добрив і засобів захисту рослин, підвищувати врожайність та 

економічну ефективність господарств. 

Разом з тим, широке застосування технологій точного землеробства в 

Україні стримується низкою проблем, серед яких висока вартість обладнання, 

недостатня цифрова грамотність аграріїв, обмежена технічна інфраструктура в 

сільській місцевості та складнощі інтеграції новітніх технологій у традиційні 

виробничі процеси. Додаткові труднощі створює воєнний стан, що впливає на 

доступ до супутникових систем позиціонування, безпеку даних та стабільність 

функціонування технічних засобів. 

Ураховуючи стратегічну важливість підвищення продуктивності аграрного 

сектору та необхідність швидкої адаптації до сучасних викликів, дослідження 

проблем упровадження систем точного землеробства є надзвичайно актуальним.  

Метою роботи є: дослідження основних проблем під час впровадження 

систем точного землеробства в аграрних підприємствах, а також обґрунтування 

шляхів їх подолання шляхом підвищення ефективності виробничих процесів, 

використання ресурсів. 

Щоб досягнути поставленої мети необхідно вирішити наступні задачі: 
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- Проаналізувати теоретичні основи та сучасний стан розвитку систем 

точного землеробства та встановити основні технологічні, організаційні, 

що перешкоджають їх упровадженню в аграрних підприємствах України. 

- Дослідити вплив інфраструктурних обмежень (зв’язок, доступ до цифрових 

даних, GPS-сигналів тощо) на ефективність використання технологій 

точного землеробства; 

- Проаналізувати специфічні проблеми, пов’язані з умовами воєнного стану, 

включаючи обмежений доступ до глобальних систем позиціонування ; 

- Розглянути особливості інтеграції цифрових технологій у традиційні 

виробничі процеси аграрних підприємств та запропонувати можливі шляхи 

подолання виявлених проблем та підвищення доступності і ефективності 

систем точного землеробства. 

 Об’єкт дослідження – ефективність впровадження та застосування систем 

точного землеробства в аграрних підприємствах.  

Предмет дослідження – взаємозв’язок сукупності технологічних, 

організаційних, технічних та економічних чинників, що впливають на 

ефективність упровадження та використання систем точного землеробства.  

Методи дослідження. Дослідження проводились із застосуванням методів 

аналізу та синтезу та узагальнення теоретичних підходів щодо впровадження 

систем точного землеробства, порівняльний аналіз та системний підхід 

встановлення взаємозв’язків між технічними, організаційними та економічними 

чинниками, статистичні методи застосовані для аналізу стану технічного 

забезпечення та цифрової інфраструктури аграрних підприємств.  

Перелік публікацій автора за темою роботи: 

1. Заєць М. Л. Тенденції розвитку розпилювачів та аналіз їхніх . Зб. праць XІ 

Міжнародної науково-практичної конференції  «Перспективи і тенденції 
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розвитку конструкцій та технічного сервісу сільськогосподарських машин і 

знарядь» . Житомир: ЖТФК, 2025. С. 151-154. 

2. Заєць М. Виявлення меж на основі теплової карти для обробки ґрунту.   

Технічне забезпечення інноваційних технологій в агропромисловому комплексі: 

матеріали V Міжнар. наук.-практ. конференції молодих учених. – Запоріжжя: 

ТДАТУ, 2025. С. 150-153. 

3. Заєць М. Л., Д. М. Бендюг  Точне землеробство – рішення для ефективного 

ведення сільського господарства. Зб. тез доп.  XХVІ  Міжнародної наукової 

конференції "Сучасні проблеми землеробської механіки"  НУБіПУ. Київ. 2025. 

С. 477-480. 

Структура та обсяг роботи. Кваліфікаційна робота складається зі вступу, 

трьох розділів, висновків, списку використаних джерел з 23 найменувань. 

Загальний обсяг роботи становить 39 сторінок комп’ютерного тексту, 9 рисунків 

та 4 таблиці. 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

1.ОГЛЯД СУЧАСНИХ ДОСЛІДЖЕНЬ ТА ТЕНДЕНЦІЙ ЩОДО СТЗ 

В УКРАЇНІ 

1.1. Зростаюче впровадження цифрових технологій 

За даними статті на ITC, багато українських фермерів використовують 

цифрові рішення: згідно з дослідженням Voice of Farmer (2024, замовленим 

Bayer), 79 % українських фермерів вже застосовують цифрові інструменти. [1] 

Серед причин — оптимізація ресурсів: 85 % респондентів говорять, що 

використовують технології для зниження витрат, 88 % – для підвищення 

врожайності, 84 % – для поліпшення якості продукції. [1] 

Фермерське господарство на Житомирщині (ФГ «Аделаїда») впровадило 

точне землеробство (система Topcon) для картоплі. [2] 

Економічні результати: прибавка врожайності ~ 5 т/га; економія на насінні 

— ~ 5 %; економія на засобах захисту рослин — до ~ 10 %. [2] 

Також зазначено, що до впровадження технології урожайність була 30 т/га, 

зараз — близько 36–37 т/га.  

Велике агропідприємство Вітагро (85 000 га) інтегрувало програмне 

забезпечення GeoPard для комплексного управління: планування, аналіз ґрунтів, 

диференційоване внесення добрив, аналітика через дані. [3] 

1.2. Наукові та дослідницькі ініціативи 

У 2025 році на конференції “Monitoring’2025” представлено дослідження, 

яке підкреслює важливість БПЛА (дронів) для картографування полів, 

моніторингу вегетаційного стану, оцінки вологості, зонального внесення добрив 

тощо. [4] 

У збірці наукових тез (Міністерство освіти і науки України, 2025) 

говориться про перспективи використання дронів в точному землеробстві і їх 

роль у майбутньому розвитку агротехнологій.  

https://itc.ua/ua/articles/rozumne-zemlerobstvo-v-ukrayini-yak-ukrayinski-fermery-vprovadzhuyut-tsyfrovi-tehnologiyi/?utm_source=chatgpt.com
https://itc.ua/ua/articles/rozumne-zemlerobstvo-v-ukrayini-yak-ukrayinski-fermery-vprovadzhuyut-tsyfrovi-tehnologiyi/?utm_source=chatgpt.com
https://superagronom.com/news/20806-gospodarstvo-z-jitomirschini-vprovadjuye-tochne-zemlerobstvo-dlya-viroschuvannya-kartopli?utm_source=chatgpt.com
https://superagronom.com/news/20806-gospodarstvo-z-jitomirschini-vprovadjuye-tochne-zemlerobstvo-dlya-viroschuvannya-kartopli?utm_source=chatgpt.com
https://geopard.tech/blog/geopard-vitagro-precision-agriculture-85000ha-ukr/?utm_source=chatgpt.com
https://eage.in.ua/wp-content/uploads/2025/04/Mon25-047.pdf?utm_source=chatgpt.com
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У журналі “Grassroots Journal of Natural Resources” (2024) проведено 

дослідження потенціалу сільськогосподарських технологій (IoT, ШІ, дрони) в 

Україні: автори підкреслюють значну можливість підвищення врожайності (до 

15–20 %) та зниження використання ресурсів (до 30 %). [5] 

Правовий аспект: в юридичній статті (2025) розглядається «точне 

землеробство» як аграрно-правова категорія — аналізуються нормативні та 

правові проблеми визначення, регулювання технологій СТЗ в Україні. [5] 

Програма USAID (АГРО) разом з AgriLab у 2024 році запустила ініціативу 

для мікро-, малих і середніх агропідприємств: агрохімічний аналіз з GPS-

прив’язкою + консультації щодо впровадження елементів СТЗ. [6] 

За цією програмою 54 % вартості послуг покриваються, а внесок аграрія — 

значно знижується (для аналізу ґрунту, GPS-прив’язки та консультацій). [6] 

За матеріалами Kyivstar Business Hub (2024), серед ключових технологій 

СТЗ, які набирають обертів, — RTK (високоточна супутникова навігація), IoT-

датчики, роботизовані системи, а також VRT (Variable Rate Technology) для 

диференційованого внесення добрив. 

Згідно з їхнім аналізом, ринок точного землеробства глобально росте, а в 

Україні є попит навіть на малі ферми (навіть від ~50 га).  

За даними Kyivstar Business Hub, економічні вигоди СТЗ включають 

підвищення продуктивності, зниження витрат на добрива, паливо, ЗЗР та 

підвищення екологічної сталості.  

У статті Fraza (2025) прогнозується, що завдяки впровадженню СТЗ 

українські аграрії можуть підвищити врожайність на 30–40 % (при відповідному 

масштабі впровадження).  

Інститут охорони ґрунтів України активно залучений до впровадження 

технологій: на Консиліумі ’25 представили автоматичні GPS-прив’язані системи 

відбору проб ґрунту. [7]  

https://grassrootsjournals.org/gjnr/nr.07-03ukr.special-fullvolume.pdf?utm_source=chatgpt.com
https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/72106/1/323634-%D0%A2%D0%B5%D0%BA%D1%81%D1%82%20%D1%81%D1%82%D0%B0%D1%82%D1%82%D1%96-750337-1-10-20250224.pdf?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
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Це свідчить про певну координацію між науковими установами та 

практичними агровиробниками для впровадження елементів СТЗ. 

1.3. Сучасний стан розвитку СТЗ в Україні 

Поширення технологій. За даними компанії FRENDT, понад 25 % 

агропідприємств в Україні вже використовують окремі елементи точного 

землеробства. [8]  Проте масштабне впровадження все ще обмежено: за оцінками, 

«точними технологіями покриті» лише до ~15 % сільгоспугідь. [9]    

Популярні технології. До основних використовуваних технологій належать 

GPS-навігація (включно з автопілотом), картографування врожайності, 

диференційоване внесення добрив (variable rate), дрони для аерофотозйомки 

тощо. app.agro-online.com 

Використовується програмне забезпечення для агровиробничого 

менеджменту: ведення карт полів, аналіз даних, розробка карт-рекомендацій.  

За даними FRENDT, впровадження СТЗ може зменшити витрати на 

добрива на 20-25 %, а перевитрата насіння скорочується на ~10…15 %. [8]   

Економія пального досягається за рахунок оптимізації руху техніки 

(наприклад, паралельне водіння). [10]   

Освітня і кадрова база. В освітніх програмах, зокрема в аграрних 

університетах, дедалі частіше викладають курси, присвячені точному 

землеробству (наприклад, лекції від фахівців компаній).  

Є розуміння необхідності інноваційного менеджменту та підготовки 

спеціалістів для СТЗ.  

1.4. Основні технологічні та організаційні чинники, що 

перешкоджають впровадженню СТЗ в Україні 

Високі інвестиційні витрати 

Закупівля обладнання: GPS-модулі, датчики, дрони, «розумна» техніка — 

усе це потребує значних капіталовкладень. [10]   

https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
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Ще на старті багато підприємств не мають достатнього бюджету або не 

готові «повністю занурюватися» в СТЗ, тому обирають поступове впровадження, 

що сповільнює масштаби. 

Недостатня «цифрова культура» в деяких господарствах: не всі аграрії 

розуміють або готові змінити підхід до управління (перейти від «традиційного» 

землеробства до даних-орієнтованого). [6]   

Обмежений кадровий потенціал: не всі підприємства мають фахівців з 

аналітики даних, ГІС чи IoT, а також немає достатньої кількості навчальних 

програм саме під СТЗ.  

Помилки при впровадженні: як зазначено в порадах експертів, багато 

підприємств припускаються помилок через неправильне формулювання цілей, 

відсутність чіткого плану, або через ігнорування базових аспектів (наприклад, 

контроль глибини висіву, тиск форсунок при обприскуванні). [6]   

Інфраструктурні та технологічні обмеження 

Не всю техніку можна легко «оснастити» для СТЗ: старі трактори або 

комбайни можуть бути несумісні з новими навігаційними системами або 

системами картування.  

Недостатня сервісна підтримка: технічне обслуговування сенсорів, дронів, 

навігаційного обладнання потребує кваліфікованих інженерів, яких може не бути 

в регіонах. 

Питання якості даних: щоб інструменти СТЗ працювали ефективно, 

потрібні надійні дані (картографія ґрунтів, зонування, моніторинг). Якщо дані 

низької якості або неповні — ефект від технологій може бути мінімальним або 

навіть шкідливим. 

Відсутність державної підтримки або стимули: хоч деякі аграрні 

підприємства впроваджують СТЗ, потрібні програми субсидій, грантів чи 

https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
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пільгового кредитування для малого та середнього бізнесу, щоб зробити 

технології доступнішими. 

Недостатня координація: бракує централізованих ініціатив або реєстрів, які 

б допомагали фермерам ділитися досвідом, залучати технологічних провайдерів 

або отримувати інформацію про найкращі практики. Наприклад, концепція 

реєстру нових агротехнологій пропонувалася, але її впровадження залишається 

неповним. [11]  

Комунікаційні бар’єри між науковими установами, технологічними 

компаніями і агропідприємствами: інколи технології розробляються в 

університетах або дослідницьких центрах, але не «дострибують» до практики 

через брак комерційних партнерств чи адаптації під реальні господарства. 

Економічний ризик: аграрії можуть боятися, що інвестиції в СТЗ не 

окупляться, особливо в умовах волатильності цін на врожай або добрива. 

Технологічні ризики: пристрої можуть давати збої, дані — бути неточними, 

програмне забезпечення — мати помилки. 

Кібербезпека: з розширенням IoT та підключених датчиків зростають 

ризики кібератак на системи СТЗ. Це окрема, але важлива проблема (хоча в 

українському контексті поки про це говорять менше). 

 

1.5.  Можливі шляхи подолання бар’єрів 

Створення цільових програм підтримки СТЗ (гранти, дотації, пільгові 

кредити) для малого й середнього агробізнесу. 

Формування національних або регіональних «агроінноваційних центрів», 

які надають консультації, навчання і технічну підтримку для фермерів, 

зацікавлених у СТЗ. 

Освіта та підготовка фахівців. Розширення навчальних програм у вишах: 

введення курсів із ГІС, аналітики даних, робототехніки, IoT у контексті 

агровиробництва. 

https://agroportal.ua/news/ukraina/nova-programa-pidtrimki-robit-tochne-zemlerobstvo-shche-dostupnishim-dlya-agrarijiv?utm_source=chatgpt.com
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Проведення тренінгів, воркшопів для практичних аграріїв з метою 

ознайомлення з перевагами СТЗ, потенційними помилками при впровадженні та 

способами їх уникнення. 

Рекомендовано стартувати з базових елементів точного землеробства 

(наприклад, GPS-навігація, картографування врожайності), а потім поетапно 

вводити складніші системи (диференційоване внесення, дрони). Це знижує 

ризики й розподіляє капітальні витрати в часі. 

Розробка чітких дорожніх карт впровадження СТЗ на рівні підприємства: 

визначення цілей, KPI, етапів. 

Інвестиції у побудову й оновлення баз геоданих (карти ґрунтів, дані 

дистанційного зондування). 

Розвиток сервісних центрів для обслуговування високотехнологічного 

обладнання (сенсори, дрони, GPS) у регіонах. 

Встановлення партнерств між агровиробниками, ІТ-компаніями, 

університетами та дослідницькими інститутами для спільного тестування, 

адаптації й масштабування технологій СТЗ. 

Обмін кращими практиками, участь у кластерних ініціативах або 

агроком’юніті для зниження бар’єрів входу і поширення знань. 

 

Висновки до розділу 1. 

 Незважаючи на складні умови (включно з війною), український агросектор 

активно рухається в бік цифровізації та впровадження елементів СТЗ.  

 Значні кейси (наприклад, Вітагро, Аделаїда) демонструють, що СТЗ може 

давати реальну економічну віддачу навіть в місцевому контексті (на 

великих і середніх господарствах).  

 Міжнародна підтримка (USAID) грає важливу роль у зниженні бар’єрів для 

малих і середніх агропідприємств.  
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 Ключовим драйвером є технологічні тренди: дрони, RTK, IoT, аналіз даних 

стають все більш «доступними» і корисними.  

 Водночас існують правові питання: визначення статусу СТЗ, регулювання 

використання даних, стандартів тощо — це піднято в юридичних 

дослідженнях.  
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2. ДОСЛІДЖЕННЯ ВПЛИВУ ІНФРАСТРУКТУРНИХ ОБМЕЖЕНЬ 

НА ЕФЕКТИВНІСТЬ ВИКОРИСТАННЯ ТЕХНОЛОГІЙ ТОЧНОГО 

ЗЕМЛЕРОБСТВА 

2.1. Регресійне ведення СТЗ на основі теплових карт для виявлення 

меж обробітку ґрунту 

Однією з основних проблем ведення систем точного землеробства, 

сьогодення є інфраструктурні обмеження, використання  GPS та GPRS передачі 

даних пов’язаних із постановкою перешкод при ведені боєвих дій на території 

України (зв’язок, доступ до цифрових даних, GPS-сигналів тощо). Тому гостро 

постала проблематика альтернативних способів забезпечення СТЗ за даних умов. 

Точне землеробство є ключовою парадигмою промислового сільського 

господарства, яка суттєво сприяє підвищенню продуктивності. У цій галузі 

дедалі більше уваги приділяється технологіям автоматизації, що мінімізують 

потребу у праці шляхом використання складних методів комп’ютерного зору для 

різних завдань з високою ефективністю [1–10]. Автономні трактори, які є 

центральними елементами сучасних практик землеробства, слугують і 

транспортними засобами, і робочими інструментами. Розвиток самокерованих 

тракторів є однією з головних цілей аграрної автоматизації [1,10]. 

Зокрема, здатність автоматизувати пошук оптимального шляху є критично 

важливою, оскільки вона значно зменшує потребу у ручному втручанні й 

забезпечує точні та ефективні операції для різних сільськогосподарських завдань. 

Для самокерованих тракторів виявлення лінії обробітку ґрунту під час роботи є 

необхідним для оптимізації робочих маршрутів, зменшення зайвих проходів та 

запобігання пропущеним ділянкам поля. Це особливо корисно для сімейних 

фермерських господарств, оскільки значно зменшує ручну працю та підвищує 

ефективність різних робіт, включаючи оранку, сівбу і збирання врожаю. 
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Автономні трактори, порівняно з традиційними, забезпечують суттєві переваги у 

скороченні витрат на виробництво. 

Зменшуючи потребу у втручанні людини, автономні трактори скорочують 

витрати на працю, підвищують точність виконання операцій та забезпечують 

безперервну роботу, навіть за складних умов, таких як низька видимість або 

тривала робота. Це сприяє підвищенню продуктивності та економічної 

ефективності сімейних ферм, забезпечуючи сталі сільськогосподарські практики. 

Традиційні технології автономних тракторів часто застосовують глобальні 

навігаційні системи (GPS) [11–13], які покладаються на абсолютні координати 

для навігації та досягли значних успіхів. Крім того, технологія лідару (LiDAR) 

використовується для отримання детальних просторових даних і підвищення 

здатності тракторів до навігації шляхом виявлення важливих структурних 

об’єктів, таких як рослини чи дерева [14,15]. Хоча ці методи забезпечують 

надійні рішення для навігації та сприйняття довкілля, вони часто обмежені 

високою вартістю та варіативністю сигналу в різноманітних умовах роботи. 

Останніми роками значного розвитку набули технології машинного зору, 

які дедалі впевненіше застосовуються в сільському господарстві, надаючи 

інноваційні рішення для різних аграрних викликів. Машинний зір привернув 

значну увагу у сфері візуального сприйняття не лише через здатність імітувати 

людське розпізнавання, але й через економічну ефективність. Зокрема, згорткові 

нейронні мережі (CNN) досягли видатних результатів у галузі комп’ютерного 

зору, демонструючи високі показники у різних завданнях. Їх складна архітектура 

дає змогу досягати виняткових результатів, часто перевершуючи людську 

точність у класифікації зображень [12]. Крім того, ефективність CNN доведена в 

інших задачах комп’ютерного зору, таких як детекція об’єктів [17] і сегментація 

[13], де здатність інтерпретувати складну візуальну інформацію є критично 

важливою. Така універсальність робить CNN незамінними для застосувань, що 
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потребують детального візуального аналізу, і сприяє їх широкому поширенню як 

у наукових, так і промислових колах. 

CNN суттєво просунули галузь автономної сільськогосподарської техніки, 

підвищивши точність навігації та виконання завдань. Наприклад, CNN 

застосовувалися в автономних тракторах для точного створення карт полів [14], 

виявлення бур’янів та моніторингу стану посівів [13]. Розпізнаючи різні типи 

рельєфу й індикатори стану рослин, CNN допомагають оптимізувати траєкторію 

руху та роботу таких тракторів, забезпечуючи ефективне покриття території та 

мінімальне пошкодження культур. Нещодавно розроблені методи на основі CNN 

запропонували інноваційні способи автономного керування 

сільськогосподарськими тракторами, використовуючи лише RGB-зображення 

[16]. Існуючі методи [15] передбачають класифікацію фрагментів зображення, 

поділяючи їх на оброблені та необроблені ділянки. Хоча ці підходи є дієвими, 

вони є обчислювально затратними, оскільки потребують незалежного 

проходження моделі для кожного фрагмента зображення під час тестування, що 

створює труднощі для роботи в режимі реального часу, яка є критичною для 

автономних тракторів. 

2.2. Виявлення меж на основі теплової карти для обробки ґрунту 

Ми пропонуємо метод, який враховує широкий контекст і поєднує теплові 

карти з картограммами. Це дозволяє краще навчати модель і точніше знаходити 

важливі ознаки на зображеннях. Такий підхід працює швидко та ефективно, тому 

добре підходить для сільськогосподарських задач у реальному часі, зокрема для 

точнішої та надійнішої автономної роботи трактора. 

Метод протестували на спеціальному наборі даних. Результати показали, 

що він добре визначає межі обробітку ґрунту та може справлятися зі складними 

деталями й різними умовами, які часто зустрічаються в сільському господарстві. 
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Хоча CNN і FCN добре працюють у багатьох сферах, ці моделі мають певні 

обмеження, особливо коли йдеться про складні середовища, як-от поля. Оскільки 

вони використовують невеликі області огляду, їм важко охопити ширший 

контекст на зображенні. У задачах на визначення меж поля це може заважати 

отриманню точних результатів, адже важливо враховувати загальну картину та 

просторові зв’язки. 

Через це CNN і FCN часто роблять локальні помилки або дають неповні 

прогнози. Щоб виправити це, потрібна постобробка, яка займає багато часу та 

ресурсів. Це робить такі моделі менш придатними для роботи в реальному часі, 

де важлива швидкість. 

Крім того, умови на полях дуже різноманітні: структура ґрунту змінюється, 

на неї впливають погода та багато інших факторів. Це створює додаткові 

труднощі для моделей CNN. (рис. 2.1.) 

 

Рис. 2.1. Приклад трьох орієнтирів, які позначають межі обробітку ґрунту.  

Лінія між червоною та зеленою точками показує напрямок руху, а зелена точка 

разом із точкою розвороту визначають місце, де трактор має змінити 

траєкторію. 

Для формування набору даних використовувався трактор LS-Mtron 

XU6168 (рис. 2, ліворуч), оснащений екшн-камерою GoPro Hero7, закріпленою 

на центральній верхній частині передньої панелі трактора для оптимального поля 
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зору (рис. 2, середній). Камера знімала двовимірні RGB-зображення з роздільною 

здатністю 1920 × 1080 пікселів та частотою 60 кадрів/с, забезпечуючи детальні 

візуальні дані для подальшого аналізу. 

 

Рис. 2.2. Середовище збору даних. Зліва направо показано: трактор, 

використаний у дослідженні; положення камери та її поле зору (см); маршрут 

руху трактора під час обробітку ґрунту 

 

Висота установки камери становила приблизно 220 см над поверхнею поля, 

що забезпечувало необмежений огляд поля та просторового контексту. Межі між 

обробленими та необробленими ділянками є ключовими для точного керування 

рухом трактора, оскільки вони дозволяють підтримувати паралельність руху 

щодо попередніх проходів та оптимізувати обробіток ґрунту. 

Для повного охоплення території трактор рухався зигзагоподібно, 

забезпечуючи перехресне покриття і формуючи репрезентативний набір даних 

для аналізу меж обробітку. 

Як показано на рис. 2 (праворуч), трактор розпочинає обробіток із вже 

існуючої межі ґрунту та рухається до кінця поля, де виконує розворот. Після 

завершення проходу трактор вирівнюється з попередньою межею для наступного 

проходу, систематично збираючи дані протягом усього руху. У випадках, коли на 

початку обробітку межі ще не існувало, трактор здійснював попередній прохід 

для встановлення стартового орієнтира. Цей початковий рядок слугує 
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відправною точкою для наступних проходів, забезпечуючи послідовний та 

організований збір даних. 

Для обробки зображень ми використали архітектуру U-Net [16] як основу 

нашої нейронної мережі завдяки її здатності ефективно виділяти ознаки. Розміри 

карт функцій у структурі U-Net забезпечують баланс між продуктивністю та 

обчислювальною ефективністю: збільшення кількості каналів покращує 

представлення високорівневих ознак, що критично для точного визначення меж, 

тоді як зменшення просторових розмірів мінімізує обчислювальні витрати. 

Кожен модуль мережі складається з двох згорткових шарів розміром 3 × 3 із 

заповненням (padding), що дозволяє зберігати розміри просторових карт функцій. 

Огляд запропонованого методу виявлення точок меж обробітку ґрунту 

показано на рис. 3. Наша модель використовує передові методи, такі як регресія 

на основі теплових карт, методи та трансформованих картограм, щоб підвищити 

здатність точно визначати та уточнювати точки меж обробітку. На фінальному 

етапі ми інтегрували результати теплової карти та регресії координат. 

 

Рис. 2.3. Мережа на основі регресії теплових карт для виявлення контрольних 

точок меж обробітку 
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U-Net генерує вихідні теплові карти, а просторові координати витягуються 

за допомогою soft-argmax. Блок перетворювача фіксує контекстні зв’язки між 

точками меж обробітку. Мережа навчена з використанням спільної функції втрат, 

яка об’єднує регресію теплових карт та регресію координат. 

2.2.1. Регресія теплових карт на основі U-Net 

У нашій методології використовувалася архітектура U-Net [16] для 

виявлення точок меж обробітку ґрунту на основі регресії теплових карт, зокрема 

з урахуванням трьох ключових точок у полі обробітку. Такий підхід дозволяє 

точно визначати межі обробітку, створюючи детальні теплові карти навколо 

точок меж. 

Ці теплові карти формуються як нормалізований гаусівський розподіл із 

параметром дисперсії, рівним п’яти. У фінальному виході теплової карти 

найвищі значення інтенсивності в кожному каналі вказують на розташування цих 

контрольних точок. Використовуючи максимальне значення в тепловій карті для 

визначення меж, наша модель забезпечує точне відтворення меж обробітку 

ґрунту. 

Архітектура U-Net (рис. 4) побудована на основі серії повторюваних 

модулів. 

   
skiph xEncorderDecoderConvO 1                                                     (2.1) 

 

де Encoder(x)skip - функція, що представляє шлях енкодера з пропускними 

зв’язками (skip connections), 

а Decoder(Encoder(x)skip) - функція, що представляє шлях декодера, який 

обробляє як вихід енкодера, так і пропускні зв’язки. 

Conv1 - позначає фінальний згортковий шар (1 x 1) на виході. 
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Рис. 2.4. Регресія теплових карт на основі U-Net для виявлення 

контрольних точок меж 

 

Ми використали архітектуру U-Net [18] як основу нашої мережі. Отримані 

з U-Net теплові карти дозволяють обчислювати точки меж обробітку ґрунту за 

допомогою функції soft-argmax [27]. 

Функція soft-argmax є диференційовною апроксимацією функції argmax, 

що дозволяє витягувати просторові координати з теплових карт без втрати 

здатності мережі навчатися через градієнтний спуск. Ця операція перетворює 

значення теплової карти, які відображають ймовірність наявності контрольної 

точки у кожному пікселі, на зважене середнє всіх координат пікселів, де ваги 

визначаються softmax-нормалізованою інтенсивністю. 

У цьому розділі розглядаємо декартові координати як просторову ознаку, а 

процес вилучення просторових ознак за допомогою soft-argmax показано на 

рис.5. 
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Рис. 2.5. Функція soft-argmax для 2D теплової карти з просторовими 

координатними картами (декартові координати) 

Функція softmax нормалізує теплову карту у розподіл ймовірностей, який 

потім поелементно множиться на X-карту та Y-карту для зважування координат. 

Результати сумуються, щоб точно визначити розташування контрольної точки на 

основі максимальних ймовірностей. 

Спочатку до теплової карти застосовувалася функція softmax, щоб 

перетворити значення інтенсивності у розподіл ймовірностей. Це перетворення 

виділяє область, найбільш ймовірну для розташування точки межі, та приглушує 

менш ймовірні ділянки. 

Отриманий розподіл ймовірностей потім множився поелементно на дві 

координатні карти: X-карту та Y-карту. На фінальному етапі ці зважені 

координати сумувалися по всій карті, щоб обчислити точні координати x та y 

контрольної точки. 

                                       (2.2) 

де O(l) представляє (l)-ту вхідну теплову карту,  
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O(l)hi - позначає окремі елементи теплової карти,  

(pi) — відповідний індекс,  

eO(l)hi - експоненційне значення . 

Параметр (α) контролює гостроту розподілу softmax: при збільшенні (α)  

функція softmax стає більш селективною, підсилюючи вплив найбільших значень 

у векторі (x). У цьому дослідженні (α) емпірично встановлено рівним 10. 

Цей процес дає кінцеві координати, точно визначаючи найбільш значущі 

позиції меж обробітку ґрунту, тим самим перетворюючи теплову карту на точні 

просторові координати. 

2.2.2. Контекстно-орієнтоване навчання з використанням трансформера 

У цьому розділі ми використовуємо трансформер для вивчення 

контекстних взаємозв’язків між точками меж обробітку ґрунту, витягнутими за 

допомогою функції soft-argmax. 

Трансформери [16] — це тип архітектури нейронних мереж, який став 

фундаментальним у різних галузях машинного навчання, включаючи обробку 

природної мови та комп’ютерне бачення. Вони використовують механізм уваги 

для оцінки впливу різних частин вхідних даних, що дозволяє захоплювати 

взаємозв’язки між віддаленими елементами у просторі ознак. На відміну від 

CNN, які зосереджуються переважно на локальних ознаках, перетворювачі 

особливо корисні для завдань, що вимагають комплексного розуміння всієї візії. 

У нашій моделі точки меж обробітку розглядаються як вектори вбудованих 

ознак і використовуються як вхідні дані дляперетворювача з метою уточнення 

результатів виявлення меж обробітку. Спочатку вектор вбудованих ознак 

нормалізується за допомогою layer normalization (LN) [16] для забезпечення 

консистентності масштабу та дисперсії. 

                                                     (2.3) 
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де μ та σ - середнє значення та стандартне відхилення векторів вбудованих 

ознак. 

ɣ та β- навчаємі параметри layer normalization (LN). 

Після нормалізації ці вектори вбудованих ознак подаються у механізм 

(multi-head attention), який обробляє вхідні дані як множини запитів (Q), ключів 

(K, keys) та значень (V, values) по кількох напрямках уваги одночасно. 

                                               (2.4) 

 
  

2.3. Метрики оцінювання 

Для оцінки точності ми використали середню радіальну помилку (Mean 

Radial Error, MRE) як ключову метрику для кількісного вимірювання точності 

наших передбачень. 

MRE особливо підходить для завдань, що включають просторові 

координати, оскільки вона безпосередньо кількісно визначає середню відстань 

між передбаченими та істинними позиціями контрольних точок межі. 

MRE обчислювалася за наступною формулою: 

   



n

i
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N
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                                (2.5) 
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де N - загальна кількість зразків, 

 хі pred та yi,pred - передбачені координати,  

хі true та yi true - координати з еталонних даних. 

Ця метрика забезпечує пряме та інтуїтивне вимірювання точності 

локалізації, усереднюючи евклідові відстані по пікселях (радіальні похибки) між 

передбаченими та фактичними позиціями для всіх зразків. 

Висновки до розділу 2. 

У дослідженні запропоновано контекстно-орієнтовану мережу на основі 

регресії теплових карт для виявлення меж обробітку ґрунту. 

Запропонований метод поєднує регресію теплових карт та трансформер-

перетворювач, що спрощує процес виявлення та робить його придатним для 

реального часу. 

Даний підхід був протестований у різних умовах, продемонструвавши 

стійке зниження середньої радіальної похибки (MRE) у всіх сценаріях, особливо 

коли обсяг даних був обмежений. 

Модель виділяється завдяки своїй здатності використовувати просторову 

контекстну інформацію, що дозволяє їй підтримувати високу точність навіть при 

обмежених наборах даних. Ця перевага особливо помітна з мінливими умовами 

навколишнього середовища, такими як зміни освітлення, текстури ґрунту або 

погодні умови та створення електронних перешкод. 

Модель досягає цієї стійкості завдяки здатності перетворювача вловлювати 

більш широкі контекстні сигнали, ефективно заповнюючи прогалини, які можуть 

бути пропущені традиційними методами, наприклад, базовою моделлю U-Net. 

Внаслідок цього підхід контекстно-орієнтовано системи демонструє 

достатню стійкість і адаптивність, ефективно справляючись із викликами, 

спричиненими мінливими умовами навколишнього середовища та нестачею 
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даних. Інтегруючи перетворювач модель балансує локальні та глобальні 

взаємозв’язки, покращуючи здатність до узагальнення у різних умовах. 
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3. РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ ОРІЄНТОВАНОЇ МЕРЕЖІ НА 

ОСНОВІ РЕГРЕСІЇ ТЕПЛОВИХ КАРТ 

3.1. Результати застосування 

Контекстно-орієнтоване навчання послідовно зменшувало похибку (MRE) 

за всіх умов, демонструючи вищу точність. У середньому MRE знижується від 

6.72 (U-Net) до 5.46 пікселів у загальних умовах, від 6.47 (U-Net) до 5.30 пікселів 

у сонячні дні та від 6.97 (U-Net) до 5.62 пікселів у похмурі дні. Це покращення 

було ще більш вираженим у певний час доби; наприклад, MRE у сонячні 

післяобідні години зменшується від 6.75 (U-Net) до 5.06 пікселів. Існуючі методи 

[18,19], демонструють покращення, які не є такими значними, як у 

запропонованого контекстно-орієнтованого навчання. Ці результати 

підтверджують ефективність запропонованого методу, особливо за умов 

змінного освітлення та погоди, і підкреслюють його стійкість та адаптивність. 

В табл. 3.1 наведено порівняльна ефективність U-Net, існуючих методів 

[18,19] та запропонованого методу контекстно-орієнтованого навчання за 

показником MRE в різних умовах. Значення MRE були отримані на основі п’яти 

окремих навчальних запусків для кожного методу, щоб забезпечити надійність 

порівняння. 

Таблиця 3.1.  

Порівняння ефективності базового навчання та контекстно-орієнтованого 

навчання. 

Погодні умови Метод Середнє 
Точка 

1 

Точка 

2 

Точка 

3 

Усі дні U-Net 6.72 6.39 6.62 7.16 
 Seo et al., 2021 [18] 6.28 5.87 6.24 6.68 
 Choi et al., 2022 [19] 5.86 5.66 5.81 6.23 

 Контекстно-орієнтоване 

навчання 
5.46 5.17 5.31 5.93 

Сонячний день U-Net 6.47 6.19 6.25 6.97 
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Погодні умови Метод Середнє 
Точка 

1 

Точка 

2 

Точка 

3 
 Seo et al., 2021 [18] 6.05 5.68 5.92 6.38 
 Choi et al., 2022 [19] 5.62 5.30 5.41 5.96 

 Контекстно-орієнтоване 

навчання 
5.30 5.15 5.01 5.75 

Похмурий день U-Net 6.97 6.58 6.99 7.35 
 Seo et al., 2021 [18] 6.52 6.05 6.56 6.97 
 Choi et al., 2022 [19] 6.10 6.02 6.21 6.50 

 Контекстно-орієнтоване 

навчання 
5.62 5.15 5.61 6.11 

Сонячний день 

(ранок) 
U-Net 6.75 6.14 6.57 7.55 

 Seo et al., 2021 [18] 6.24 5.84 6.12 6.76 
 Choi et al., 2022 [19] 5.68 5.35 5.47 6.16 

 Контекстно-орієнтоване 

навчання 
5.54 5.41 5.13 6.15 

Сонячний день 

(після обіду) 
U-Net 6.18 6.24 5.93 6.38 

 Seo et al., 2021 [18] 5.85 5.52 5.72 6.00 
 Choi et al., 2022 [19] 5.56 5.24 5.34 5.76 

 Контекстно-орієнтоване 

навчання 
5.06 4.95 4.88 5.35 

 

На рис. 3.1 представлено box-графіки MRE для різних погодних умов. 

Результати показують, що запропонований метод стабільно перевершував інші 

методи. Box plot-графіки демонструють варіативність у продуктивності різних 

підходів, причому запропонований метод має менший розкид і нижчі медіанні 

значення MRE. Така стабільність підтверджує ефективність запропонованого 

підходу контекстно-орієнтованого навчання для роботи в різних погодних 

умовах, роблячи його надійним вибором для практичних застосувань. 
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Рис. 3.1. Box plot-графіки значень MRE для різних методів за різних 

погодних умов  

Значення MRE були отримані з п’яти різних сеансів навчання. Порівнювані 

методи включають U-Net, Seo та ін., 2021 [18], Choi та ін., 2022 [19], а також 

запропонований метод. Погодні умови охоплюють усі дні, сонячні дні, похмурі 

дні, сонячні дні (ранок) та сонячні дні (післяобідній час). Точки на box plot-

графіках представляють викиди — це значення, що виходять за межі типової 

області розподілу. 

В табл. 3.2 представлено детальний аналіз того, як кількість навчальних 

зображень впливає на ефективність різних підходів до навчання, включаючи U-

Net, існуючі методи [18]; [19] та запропонований метод контекстно-

орієнтованого навчання. 

Таблиця 3.2. Порівняння ефективності базового навчання та контекстно-

орієнтованого навчання залежно від кількості навчальних зображень. 

Кількість навчальних 

зображень 
Метод Середнє 

Точка 

1 

Точка 

2 

Точка 

3 

2590 (100%) U-Net 6.72 6.39 6.62 7.16 

 Seo et al., 2021 [18] 6.28 5.87 6.24 6.68 

 Choi et al., 2022 [19] 5.86 5.66 5.81 6.23 



31 

 

Кількість навчальних 

зображень 
Метод Середнє 

Точка 

1 

Точка 

2 

Точка 

3 

 Контекстно-орієнтоване 

навчання 
5.46 5.15 5.31 5.93 

1480 (≈50%) U-Net 7.13 6.84 7.11 7.45 

 Seo et al., 2021 [18] 6.69 6.46 6.72 6.88 

 Choi et al., 2022 [19] 6.59 6.12 6.66 6.99 

 Контекстно-орієнтоване 

навчання 
5.68 5.67 5.44 5.93 

740 (≈25%) U-Net 7.98 7.61 7.77 8.55 

 Seo et al., 2021 [18] 7.45 7.02 7.22 8.11 

 Choi et al., 2022 [19] 7.27 6.58 7.33 7.91 

 Контекстно-орієнтоване 

навчання 
6.08 5.84 5.99 6.41 

Жирним шрифтом виділено найкращі результати. 

Ефективність методів оцінювалася за допомогою показника MRE у 

пікселях за умов повної доступності даних (2590 зображень, 100%) та обмеженої 

доступності даних (1480 зображень, ≈50% і 740 зображень, 25%). Результати 

показали чітку тенденцію: зі зменшенням кількості навчальних зображень MRE 

збільшується для всіх методів у всіх точках, що свідчить про зниження 

ефективності. Різниця в продуктивності стає особливо помітною при зменшенні 

доступності даних до ≈25% (740 зображень). 

За цих умов підхід контекстно-орієнтованого навчання показав зростання 

середнього MRE від 5.46 до 6.08, що відповідає збільшенню помилки всього на 

0.62 пікселя. Для порівняння, у U-Net спостерігалося більш значне погіршення: 

MRE підвищився від 6.72 до 7.98 (збільшення помилки на 1.26 пікселя). Існуючі 

методи демонструють проміжні рівні зниження ефективності, але не досягають 

стійкості контекстно-орієнтованого навчання. 

Ці результати свідчать, що, хоча всі методи страждають від обмеженої 

доступності даних, підхід контекстно-орієнтованого навчання є більш стійким, 

демонструючи менше зростання помилки. Вища стійкість цієї моделі в умовах 

обмежених даних пояснюється її здатністю використовувати ефекти просторової 
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регуляризації. Метод інтегрує контекстуальну інформацію, яка ефективно 

обмежує процес навчання, дозволяючи точніше відтворювати інформацію навіть 

з меншої кількості даних. 

У табл. 3 наведено результати дослідження, проведеного для оцінки впливу 

зміни кількості "голів" у трансформері в межах запропонованого фреймворку. 

Оптимальна ефективність була досягнута при трьох головках, коли MRE досяг 

мінімального значення - 5.46. Використання однієї або двох голів дало MRE 

відповідно 5.56 і 5.58, що свідчить про те, що менша кількість голів може 

обмежувати здатність моделі захоплювати достатні взаємозв’язки даних. 

Таблиця 3.3.  

Дослідження трансформерів із різною кількістю головок 

Кількість голів 1 2 3 4 5 

MRE (пікселі) 5.56 5.58 5.46 5.50 5.48 

 

Навпаки, збільшення кількості голів понад три, наприклад до чотирьох або 

п’яти, призвело до незначного зростання MRE до 5.50 і 5.48 відповідно, ймовірно 

через неефективність, таку як перенавчання або надлишковість у обробці 

додаткових механізмів уваги. Ці результати свідчать, що хоча додаткові голови 

можуть захоплювати більш складні взаємозв’язки даних, надмірна їх кількість 

може призвести до неефективності, що в підсумку знижує продуктивність. 

Проведена оцінка впливу зміни параметра soft-argmax β за допомогою 

показника MRE. Результати показують, що збільшення β від 1 до 10 призводить 

до значного покращення MRE — зменшення від 5.66 до 5.46. Однак подальше 

збільшення β до 15 і 20 призводить до зростання MRE до 5.93 та 7.18 відповідно. 

Це свідчить про те, що занадто велике значення β може викликати надмірне 

підсилення (over-sharpening), коли модель може перенавчитися на шум або 
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специфічні ознаки, втрачаючи здатність добре узагальнювати результати для 

різних сценаріїв. 

Таблиця 3.4.  

Вплив параметра soft-argmax β на ефективність (MRE) 

Параметр β 1 5 10 15 20 

MRE (пікселі) 5.66 5.53 5.46 5.93 7.18 

 

3.2. Візуалізація результатів 

Візуальне порівняння виявлення меж обробітку ґрунту за різних погодних 

умов та часу доби наведено на рис 3.2. 

На кожному зображенні окремі точки меж обробітку відзначені синіми, 

зеленими та червоними крапками для першої, другої та третьої точок відповідно. 

Ці точки були стратегічно розміщені, щоб відобразити значущі ділянки для 

точного керування сільськогосподарською технікою. 

 

Рис. 3.2. Візуальне порівняння виявлення меж обробітку ґрунту за різних 

умов освітлення з використанням базової регресії теплових карт (U-Net) та 

контекстно-орієнтованого навчання  



34 

 

Жовті пунктирні рамки позначають помилки локалізації. 

Наведені зображення порівнюють результати базової регресії теплових 

карт за допомогою U-Net та підходу контекстно-орієнтованого навчання, який 

інтегрує U-Net з трансформером, у різних погодних умовах. На сонячних днях 

неточності у виявленні точок обробітку були помітні при використанні класичної 

регресії теплових карт, що відзначено жовтими пунктирними рамками. 

Проте підхід контекстно-орієнтованого навчання, який поєднує U-Net із 

трансформером. Підхід контекстно-орієнтованого навчання значно покращив 

результати. Аналогічно, у похмурі дні базова регресія теплових карт стикалася з 

проблемами неправильного визначення позицій, тоді як метод контекстно-

орієнтованого навчання продемонстрував покращені результати та стійкість до 

змін умов навколишнього середовища. 

На рис. 3.3 показані матриці self-attention навченої моделі трансформера, 

зокрема візуалізація взаємозв’язків між трьома точками меж обробітку.  

 

Рис. 3.3. Візуалізація матриць self-attention у навченої моделі трансформера, що 

демонструє взаємозв’язки між трьома точками меж обробітку.  

Значення attention score позначені червоним кольором у матрицях. Лінії на 

зображеннях відображають значення attention score, при цьому товстіші лінії 

означають вищі значення уваги. 
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Кожен підграфік складається із зображення та відповідної матриці уваги. 

На зображеннях лінії з’єднують три точки, а товщина ліній відображає значення 

attention score. Товстіші лінії означають вищі значення attention score, що свідчить 

про сильнішу увагу або значущість взаємозв’язку між точками. 

Матриці праворуч відображають значення attention score червоним 

кольором. Ці показники кількісно визначають важливість кожної точки межі в 

контексті інших точок, як її визначила модель трансформера. Наші результати 

показують, що точки меж демонструють однаково низькі значення attention score, 

коли вони посилаються самі на себе, і, навпаки, надають більше уваги іншим 

точкам. Крім того, помітних змін у метриці attention score не спостерігалося при 

зміні умов навколишнього середовища або обсягу навчальних даних. 

 

Рис. 3.4. Криві функції втрат (loss) для навчального та валідаційного наборів 

даних за використання 100%, 50% та 25% доступних зображень. 

Криві показують, що продуктивність моделі знижувалася зі зменшенням 

кількості навчальних даних. 

При використанні повного набору даних (2590 зображень) як втрати на 

навчанні, так і на валідації зменшувалися поступово, що свідчить про хорошу 

здатність до узагальнення. При використанні половини даних (1480 зображень) 

валідаційна втрата коливалася сильніше та була вищою, що вказує на зменшення 

здатності до узагальнення. 
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При використанні лише 25% набору даних (740 зображень) валідаційна 

втрата стала більш нестійкою, проте стабілізувалася після перших епох без ознак 

перенавчання. 

Висновки до розділу 3. 

Було проведено оцінку впливу зміни параметра soft-argmax β за допомогою 

метрики MRE. Результати показали, що збільшення β від 1 до 10 призводить до 

помітного покращення MRE — зниження з 5.66 до 5.46. Проте подальше 

зростання β до 15 та 20 супроводжується збільшенням MRE до 5.93 та 7.18 

відповідно. Це свідчить про те, що занадто велике значення β може викликати 

надмірне підсилення (over-sharpening), коли модель починає перенавчатися на 

шум або специфічні ознаки, втрачаючи здатність добре узагальнювати 

результати для різних сценаріїв. 

Матриці відображають значення attention score червоним кольором. Ці 

показники кількісно визначають важливість кожної точки межі в контексті інших 

точок, як її визначила модель трансформера. Результати показують, що точки 

меж демонструють однаково низькі значення attention score, коли вони 

посилаються самі на себе, і, навпаки, надають більше уваги іншим точкам. Крім 

того, помітних змін у метриці attention score не спостерігалося при зміні умов 

навколишнього середовища або обсягу навчальних даних. 

Лише 25% набору даних (740 зображень) валідаційна втрата стала більш 

нестійкою, проте стабілізувалася після перших епох без ознак перенавчання, що 

призводило до зниження продуктивністі моделі зі зменшенням кількості 

навчальних даних. 
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ЗАГАЛЬНІ ВИСНОВКИ 

1. Попри складні умови, включно повязані з боєвими діями, український 

агросектор активно рухається до цифровізації та впровадження елементів СТЗ. 

Практичні кейси, як-от Вітагро та Аделаїда, демонструють реальну економічну 

віддачу СТЗ на великих і середніх господарствах. Важливу підтримку надає 

міжнародна допомога (зокрема USAID), що знижує бар’єри для малих та середніх 

агропідприємств. Основними драйверами розвитку є технологічні тренди - 

дрони, RTK, IoT, аналіз даних - які стають більш доступними та ефективними.  

2. У дослідженні запропоновано контекстно-орієнтовану мережу на основі 

регресії теплових карт із трансформером для виявлення меж обробітку ґрунту в 

реальному часі. Модель демонструє стійке зниження середньої радіальної 

похибки, особливо при обмеженому обсязі даних, завдяки використанню 

просторової контекстної інформації.  

3. Перетворювач дозволяє ефективно інтегрувати локальні та глобальні 

сигнали, підтримуючи високу точність навіть за мінливих умов навколишнього 

середовища та електронних перешкод. Підхід показує високу стійкість і 

адаптивність, покращуючи здатність до узагальнення та роблячи метод 

придатним для практичного застосування. 

4. Оцінка впливу параметра soft-argmax β показала оптимальний діапазон 

значень: збільшення β від 1 до 10 покращує метрику MRE, тоді як подальше 

зростання до 15…20 викликає перенавчання та погіршення результатів. Аналіз 

attention score трансформера показав, що модель приділяє більшу увагу 

взаємозв’язкам між різними точками меж, при цьому зміни умов навколишнього 

середовища або обсягу даних суттєво не впливають. Зменшення обсягу 

навчальних даних до 25% спричиняє втрати на початку навчання, але модель 

швидко стабілізується без ознак перенавчання, хоча продуктивність дещо 

знижується. 
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