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Abstract. The paper deals with a Fredholm boundary value problem for a linear de
lay system with several delays defined by pairwise permutable constant matrices. The 
initial value condition is given on a finite interval and the boundary condition is given 
by a linear vector functional. A sufficient condition for the existence of solutions of 
this type of boundary value problem is proved. Moreover, a family of linearly indepen
dent solutions in an explicit general analytic form is constructed under the assumption 
that the number of boundary conditions (determined by the dimension of linear vector 
functional) do not coincide with the number of unknowns of the system of the delay dif
ferential equations. The proof of this result is based on a representation of solutions by 
using the so-called multi-delayed matrix exponential and a method of a pseudo-inverse 
matrix of the Moore-Penrose type.
Keywords: boundary-value problem, multi-delayed system, Moore-Penrose pseudo
inverse matrix.
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1 Introduction

The aim of the paper is to prove an existence result for the following boundary-value problem:

z (t ) =  Az(t ) +  B1z (t — T1) +  ■■■ +  Bnz(t — ) +  g (t); t Є [0,
z (s ) =  ф(s), if s Є [—t,0 ] ,

lz(^) =  a  Є R m, (1.2)
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where T1, . . . ,  Tn >  0, (n >  0), t  :=  max{T1, . . . ,  Tn}  and A, B1, . . . ,  Bn are N  x N  constant 
permutable matrices such that ABi =  BiA, BiBj =  BjBi for each i,j  Є { 1 , . . . , n}  and g(t)  
is an N-dimensional column-vector, with components in the space Lp [0, b] (1 <  p <  <x>) 
being functions integrable on [0, b]; ф : К  \ [0, b] ^  R N is a given N-dimensional column- 
vector function; a  is an m-dimensional constant vector-column, l is an m-dimensional linear 
vector-functional, defined on the space Dp [0, b] of n-dimensional vector-functions absolutely 
continuous on [0, b]: l =  col(l1, . . . ,  lm) : Dp [0, b] ^  K m, l i : Dp [0, b] ^  К. It is not very 
difficult to prove that in this space such problems for functional-differential equations are of 
Fredholm's type with nonzero index (see, e.g., [1, 4, 5]).

First of all we consider initial value problems for a system of linear differential equations 
with delays defined by pairwise permutable matrices:

z(t) =  Az(t) +  B1 z(t — T1 )+--------+ Bnz(t — Tn) +  g(t),  t Є [0,b], (1 3 )

z(s) =  ф(s), if s Є [—T,0].

Using the notations

(Sh.z)(t) :=  l z{Hi{,)) if k { t ) : =  ‘ — ^ Є |0' Я  (1.4)
( hi ) ( )  \ 0 if ht(t) :=  t — T Є [0,b],

ф^(t) :=  j 0 if hi (t) Є [0, b], (1.5)
\ ф ( Ь (t)) if hi(t) Є [0,b],

it is possible to rewrite initial value problems for (1.3) as an operator equation

n
(Lz)(t) :=  z(t) — Az(t) — E Bi(Sh.z)(t) =  f ( t ) ,  (1.6)

i=1

where (Sj1.z)(t) is an N-dimensional column-vector and f ( t )  is an N-dimensional column- 
vector defined by the formula

n
v (t) :=  g (t) +  E ^ ф hi(t) Є Lp [0,b].

i=1

The operator S^.: Dp ^  Lp admits the following representation:

, b
(Sh.z)(t) =  Xhi(t,s)z(s) ds +  Xhi(t,0)z(0),

where Xhi (t, s) is the characteristic function of the set

П =  {(t ,  s) Є [0, b] x [0, b] : 0 <  s <  hi (t) <  b} ,

defined by j
, , f 1, (t, s) Є О,

Xhi s) =  \ 0, (t, s) Є о .

We will investigate the equation (1.6) assuming that the operator L maps a Banach space 
Dp [0, b] of absolutely continuous functions z : [0, b] ^  R N with the norm

\\z ( t ) \\Dp =  ||z ( t )\\lp +  |z (0 )|RN
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into the Banach space Lp [0, b] (1 <  p <  <&) of functions ф : [0, b] ^  R N integrable on [0, b],
equipped with the standard norms for these spaces. It is well-known [1] that, in the con
sidered spaces, problem (1.6) is equivalent to initial value problem (1.3). The transforma
tions (1.4), (1.5) allow to add the initial function ty(s), s <  0 to an inhomogeneity and thus to 
generate an additive and homogeneous operation not depending on ф, and without a classical 
assumption regarding the continuous connection of solution z(t) with the initial function ty(t) 
at the point t =  0. A solution o f  differential system (1.6) is defined as a vector-function z(t) Є Dp [0, b] 
absolutely continuous on [0, b] with z(t) Є Lp [0, b], i f  it satisfies the system (1.6) almost everywhere 
on [0, b]. Such a treatment makes it possible to apply to the equation (1.6) with the linear and 
bounded operator L well developed methods of linear functional analysis. It is well-known 
(see, e.g., [1, 3, 4]) that an inhomogeneous operator equation (1.6) with delayed arguments is 
solvable for an arbitrary right-hand side f ( t )  Є Lp [0, b] and has an N-dimensional family of 
solutions (dim ker L =  N) in the form

г b
z(t) =  X(t)c +  K(t,s)®(s) ds, for all c Є R N (1.7)

0
where the kernel K (t, s) of the integral is an (N x N) -dimensional Cauchy matrix K (t, s) being, 
for every fixed s, a solution of the matrix Cauchy problem:

(LK( ■,s))(t)  :=  — AK(t,s)  — E B i ( S hiK ( ; s ) ) ( t )  =  0, K(s,s)  =  I .
i= 1

In the following we assume that the matrix K(t, s) is defined in the square [0, b] x  [0, b] and 
K(t, s) =  0 if 0 <  t <  s <  b. A fundamental (n x n )-dimensional matrix for the homogeneous 
( f ( t )  =  0) equation (1.6) has the form X(t) =  K(t,0)  (see [1]).

A disadvantage of this approach, when investigating the above-formulated problem, is the 
necessity to find analytically a fundamental X(t) and the Cauchy K (t,s)  matrices [5, 7]. Below 
we consider the case of a system with delays, when this problem can be directly solved. In this 
case the problem of how to construct the Cauchy matrix is successfully solved analytically due 
to a delayed matrix exponential defined in [6] and generalized to the case of several delays in 
[8].

2 Multi-delay matrix exponential

We recall the definition of the multi-delay matrix exponential defined in [8].

Definition 2.1. Let B1, . . . ,  Bn be pairwise permutable N  x N  matrices, i.e., BiBj =  BjBi for 
each i, j  Є { 1 , . . . ,  n}.  For each j  =  2 , . . . ,  n we define N  x N  multi-delayed matrix exponential 
corresponding to delays Tj >  0 and matrices B1, . . . ,  Bj as follows

Bl'...'Bjt
e4  у : =

©, if t <  —Tj,

Xj—1 (t +  Tj), if Tj <  t <  0,

. t (2.1)
< Xj—1(t +  Tj f +  Bj f 0 Xj—1(t — s1 )Xj—1(s1) ds1

+ + Bk f ( k—1)Tj f ( k—1)Tj . . . f ( k—l ) Tj Xj—1 (t — s1)
x Ш —1 X j—1 (si — si+ 1 )Xj—1 (sk — (k — 1)Tj) d sk . . .  ds1, if (k — 1)Tj <  t <  Щ ,

k =  1 ,2 , . . . ,
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where: Xj—1 (t) =  e ^ j  ̂  Tj—1), © is the null N  x N  matrix, function e®1,'//.®'4 has the prop
erties well described in [8, Lemma 7].

Using the multi-delayed matrix exponential (2.1) we can represent a solution z(t) of a 
corresponding linear system (1.6) with multiple delays and pairwise permutable matrices in 
the form (1.7), where

K(t ,s)  :=  Y(t — s) if 0 <  s <  t <  b, K(t ,s) =  0 if 0 <  t <  s <  b (2.2)

and
Y(t) =  eAt e ^ - T t (t—Tn), Bi =  e—ATi Bi, i =  1 , . . . ,  n,

X(t) := K(t,0)  =  Y(t) =  e At e B z B {t—Tn) .

3 Fredholm boundary-value problem

Using the results [3, 4], it is easy to derive results for a general boundary-value problem if 
the number m of boundary conditions does not coincide with the number N  of unknowns in 
a differential system with a delay. We derive such results in an explicit analytical form. We 
consider the boundary-value problem

n
z(t) — Az(t) — E Bi(Sh.z)(t) =  f ( t ) ,  t Є [0, b] , (3.1)

i=1
lz(-) =  а Є R m, (3.2)

where a  is an m-dimensional constant vector-column, l =  col(l1, . . . ,  lm) : Dp [0, b] ^  R m, 
( li : Dp [0, b] ^  К)  is an m-dimensional linear vector-functional defined on the space Dp [0, b] 
of N-dimensional vector-functions absolutely continuous on [0, b]. As above, we state that, in 
the spaces considered, this problem is equivalent to problem (1.1), (1.2), where

n
V ( t ) : =  g (t) +  E Br^hi( t) Є Lp[0 ,b].

i=1

We will derive sufficient and necessary conditions, and a representation of the solutions 
z Є Dp [0, b], z(t) Є Lp [0, b] of the boundary-value problem (3.1), (3.2).

Substituting the general solution (1.7) of the equation (3.1) into the boundary condi
tion (3.2), in accordance with (2.2), we will have the algebraic system

Г b
Qc =  a — l K( ■, s)w(s) ds (3.3)

0

with the constant m x N  dimension matrix

Q =  lX(^) =  l |eA e®1;:.^ ;(— n) .

Preserving the above used notation [4], we have: rankQ =  n1 <  m in(m ,N),  Pq :=  In — 
Q+Q is an N  x N-dimensional matrix (orthogonal projection) projecting the space R N to the 
kernel (ker Q) of the matrix Q, Pq* :=  Im — QQ+ in an m x m-dimensional matrix (orthogonal 
projection) projecting the space R m to the kernel Q* of the transposed matrix Q* =  QT. Using 
the property

rank Pq* =  m — rank Q* =  d =  m — n1
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we will denote by Po* a d x  m-dimensional matrix constructed from d linearly independent 
rows of the matrix Po*. Using the property

rank Po =  N  — rank 0  =  r =  N  — щ

we will denote by Por an N  x r-dimensional matrix constructed from r linearly independent 
columns of the matrix Po.

Then (see [4, p. 79]) the condition

P o * {  a — l j  K f ,  s) f ( s )  ds^j =  0 (3.4)

is necessary and sufficient for algebraic system (3.3) to be solvable and if such condition is 
true, system (3.3) has a solution

c =  Porcr +  o +  { a — l j  K(v s) f ( s )  ds| for all cr Є R r, (3.5)

where o + is an N  x m-dimensional matrix pseudo-inverse with respect to the m x N -dimen-
sional matrix o .

Substituting the constant c Є R N defined by (3.5) into (1.7), we get a formula for the 
general solution of problem (3.1), (3.2):

z(t, cr) =  Xr (t)cr +  (G ф) (t) +  X ( t ) o + a ,  (3.6)

where Xr (t) =  X(t)Por,
f  b

(G f ) ( t )  := G(t, s) ф(s) ds
J0

is a generalized Green operator, and

G(t,s)  :=  K(t ,s)  — X ( t ) o + l K (  •,s)

is a generalized Green matrix, corresponding to the boundary-value problem (3.1), (3.2). 
Therefore, the following theorem holds.

Theorem 3.1. I f  rank o  =  n1 <  min(m, N),  then the homogeneous problem corresponding to prob
lem (3.1), (3.2) (with ф^) =  0, a =  0) has exactly r (where r =  N  — n1) linearly independent solutions 
in the space Dp [0, b]. The inhomogeneous problem (3.1), (3.2) is solvable in the space Dp [0, b] if  and 
only i f  ф(t) Є Lp [0, b] and a Є R m satisfy d linearly independent conditions (3.4). Then it has an 
r-dimensional fam ily o f linearly independent solutions z(t, cr) : z(-, cr) Є Dp [0, b ] , Z (•, cr) Є Lp [0, b], 
represented in an explicit form  (3.6).

The case of rank o  =  N  implies the inequality m > N, i.e., the boundary-value problem is 
overdetermined, the number of boundary conditions is not less than the number of unknowns, 
Theorem 3.1 has the following corollary.

Corollary 3.2. I f  rank o  =  N, then the homogeneous problem has only the trivial solution. Inhomoge
neous problem (3.1), (3.2) is solvable i f  and only if

PQ* ^ a  — l j  K( •, s ) ф(s) ds^j =  0

where d =  m — N. Then the unique solution can be represented as

z(t) =  (G ф)(^ +  X ( t ) o + a .
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The case of rank Q =  m is interesting as well. Then the inequality m < N  holds, i.e., 
the boundary-value problem is underdetermined. In this case, Theorem 3.1 has the following 
corollary.

Corollary 3.3. I f  rank Q =  m, then the boundary-value problem has an r-dimensional (r =  N  — m) 
fam ily o f solutions. The inhomogeneous problem (3.1), (3.2) is solvable for arbitrary <p(t) Є Lp [0, b] 
and а Є R m and has an r-parametric fam ily o f solutions

z(t, cr) =  Xr (t)cr +  (G y )(t)  +  X (t)Q +a.

Finally, combining both particular cases mentioned above, we get the following.

Corollary 3.4. I f  rank Q =  N  =  m, then the homogeneous problem has only the trivial solution. 
The inhomogeneous boundary-value problem (3.1), (3.2) is solvable for  arbitrary <p(t) Є Lp [0, b] and 
а Є R n , and has a unique solution

z(t) =  (G y )(t)  +  X (t)Q —1a.

Corollary 3.5. I f  A =  0 and i =  1 ,  then from  Theorem 3.1 we obtain the result published in [2].

4 Example

Consider the boundary value problem with two delays [8, p. 3350]

z(t) =  b1 z (^ — 4̂  +  b2z(t — 1 ) +  ф(t), t Є [0,1~], (4.1)

Iz(-) =  a, (4.2)

where t  =  col(l1, l2) is a two-dimensional vector functional:

l1 z ( -) :=  — у  z(0) +  2z(1^

l2z ( -) :=  ( 2 +  ^  z(0) — z ( l) ,

a =  col(a1, a2) Є К2.
The general solution of the equation (4.1) has the form

z(t) =  Y(t)c +  I  Y(t — s) w(s) ds, (4.3)
J0

where Y(t)  is the solution of the corresponding homogeneous (4.1) equation on the interval 
[0,1] [8, p. 3351]

{0, t <  0,

1 , 0 <  t <  3,

1 + b1 (t — 4 ), 4 < t < 1.

Substituting the general solution (4.3) into the boundary conditions (4.2), we obtain an alge
braic equation

Г 1
г -і 2 /  Y(1 — s)<p(s) ds

Qc =  a1 — 01 . (4.4)
■ 2 — f  Y(1 — s) f ( s )  ds

0
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For boundary value problem (4.1), (4.2) the matrix Q has the form

Q =  m 0  =

Then

" -  b1 Y(0) +  2Y(1) " ' 2 '
_ (2 +^1)  Y(0) -  Y(1) _ 1

PQ =  0, Pq*

1 2
5 -  5
2 4
5 5

Pq*
1 2
5 -  5 Q+ _ 2 1

5 5

The equation (4.4), and hence the boundary value problem (4.1), (4.2) is solvable if and only 
if condition

Pq*
a 1 2 £  Y(1 -  s) V(s) ds
a2

.  -  /01 Y(1 -  s )v (s) ds _
0

is satisfied, and after the transformation that is of the form

a 1 — 2a2 — 4 [  Y (1 — s) w(s) ds =  0, 
0

where

(4.5)

Y(1 -  s)
1,

1

3 1
0 <  1 — s <  — — < s <  1,

4 4
3 1
-  <  1 — s <  1 ^  0 <  s <  - .  
4 4

Since Pq =  0, then under the condition (4.5), equation (4.4) has a unique solution

c =  Q+ a1 2 £  Y(1 -  s) v (s) ds
a2

. -  £  Y(1 -  s )v (s) d s ,
(4.6)

Substituting c from (4.6) in the formula (4.3) we have a unique solution of the boundary value 
problem (4.1), (4.2)

z(t) =  [  Y(t -  s)<p(s) ds -  Y(t)Q +  
0

which after conversion has the form

2 £  Y (1 -  s )V(s) ds 
-  І01 Y (1 -  s) V(s) ds

+  Y(t)Q+ a1
a2

rt 3 г 1
z ( t ) =  Y(t — s) f ( s )  ds — -  Y(t) Y(1 — s) f ( s )  ds +  Y(t)

J0 5 ,J0
2a 1 a2
T "  +  5"

and the generalized Green matrix, corresponding to the boundary-value problem (4.1), (4.2), 
has the form

Y(t -  s) -  - Y(t)Y(1 -  s), 0 <  s <  t,
G(t, s) =  \ 3 5 (4.7)

.........................  t <  s <  1.- ^Y(t)Y (1 -  s),

For example, the condition (4.5) will be fulfilled for the inhomogeneities of the following form:

b1f ( t )  =  t, a 1 =  2, a2 =  -
43 -3 '
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On the interval 0 <  t <  |, we have in the Green matrix (4.7) Y(t) =  1, Y(t — s) =  1 and the 
solution of the boundary value problem (4.1), (4.2) for

<f>(t) =  t, a 1 =  2, a2
b1 

43 -3

will have the form
t2 3

z ,( t> =  2 — 5
1 +  A _
2 +  43 • 6

2 1
+  — a1 +  — a2. 5 5

On the interval | <  t <  1 we have in the Green matrix (4.7)

Y(t) =  1 +  b1 ^t — 4 ) ,

Y(t — s) =  1 +  b1 t̂ — 4 — s ĵ
and the solution of the boundary value problem (4.1), (4.2) will have the form

z2 (t) =
t2 ( t -  3) 2 t3 3t2 9
2  +  b1t L —A - — b1 3 +  b1 ”8” — b14^

3
1 +  b1| t — 4

1
2 +  43 • 6 + 1 +  b1 ( t — -

2 1
5 a1 +  5 a2
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