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SOLUTION OF NORMALLY SOLVABLE OPERATOR EQUATIONS IN A HILBERT SPACE

V. F. Zhuravlev UDC 517.983

We find a formula for the unique pseudoinverse of a normally solvable operator, establish conditions
for the existence of a unique solution of a normally solvable equation, and obtain its representation in a
Hilbert space. We also introduce the notion of one-sided pseudoinverse operators for normally solvable
operators acting in Hilbert spaces and consider methods for their construction.

In the theory of ordinary differential equations and functional differential equations, many problems can be re-
duced to an operator equation Lx D y with a linear, bounded, normally solvable operator L: This representation
allows one to set aside specific difficulties typical of every individual problem and to analyze these problems using
methods of the theory of operators and functional analysis, focusing on the investigation of their general properties.
In the course of this analysis, there arises the problem of the construction of generalized inverse and pseudoinverse
operators for normally solvable operators in Banach and Hilbert spaces.

Preliminary Information

Assume that a linear, bounded, normally solvable operator L acts from a real Hilbert space H1 into a real
Hilbert space H2; LWH1 ! H2: According to [1, 2], an operator L�WH2 ! H1 that possesses the properties

LL�L D L;

L�LL� D L�
(1)

is called a generalized inverse of the operator L:
This operator is not uniquely defined. However, by using geometric properties of Hilbert spaces (the presence

of a scalar product in these spaces and, as a consequence, their unique decomposability into direct sums of orthog-
onal subspaces, and the isomorphism of dual spaces), one can obtain subtler results on the generalized inversion of
normally solvable operators in Hilbert spaces, namely, one can choose a unique pseudoinverse operator from the
set of generalized inverses L� of the operator L [3–5].

An operator LCWH2 ! H1 that possesses the properties [3, 4]

LLCL D L;

LCLLC D LC;

.LLC/� D LLC D IH2
� PN.L�/;

.LCL/� D LCL D IH1
� PN.L/

(2)
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is called pseudoinverse to the operator L in the Moore–Penrose sense. Here, PN.L/WH1 ! N.L/ and
PN.L�/WH2 ! N.L�/ are the orthoprojectors of an operator LWH1 ! H2 and its adjoint L�WH�2 ! H�1 to
the null spaces N.L/ and N.L�/; respectively.

It is known [6] that a space dual to a Hilbert space coincides with it up to isomorphism, i.e., H�1 D H1

and H�2 D H2: It was shown in [1, p. 139] that, since the null space N.L/ � H1 and the image R.L/ � H2

of the operator L are closed and any closed subset of a Hilbert space is complementable, L is a generalized
invertible operator and there exist orthoprojectors PN.L/WH1 ! N.L/; LPN.L/ D 0; and PN.L�/WH2 !

N.L�/; L�PN.L�/ D 0; that induce a decomposition of H1 and H2 into direct orthogonal sums [7], namely,

H1 D N.L/˚R.L
�/;

H2 D N.L
�/˚R.L/;

(3)

where N.L/ D PN.L/H1; N.L
�/ D PN.L�/H2; R.L/ D .IH2

�PN.L//H2; and R.L�/ D .IH1
�PN.L//H1:

Statement of the Problem

Consider the problem of finding conditions for the existence of solutions of the equation

Lx D y (4)

and the construction of these solutions; here, LWH1 ! H2 is a linear, bounded, normally solvable operator.
In the present paper, we pose the following problems: Construct one-sided pseudoinverse operators LCr and

LC
l

and, on their basis, a unique pseudoinverse operator LC: Using orthoprojectors and the pseudoinverse opera-
tor LC; find a criterion for the solvability of equations with a linear, bounded, normally solvable operator L and
obtain expressions for these solutions.

Intermediate Result

Under the conditions of the problem posed, three cases are possible for the null spaces N.L/ and N.L�/:

Case 1. The subspace N.L/ is linearly isomorphic to the subspace N1.L
�/ � N.L�/; N.L/ Š N1.L

�/:

This implies that there exist

(i) a linear, bounded, invertible operator J1WN.L/ ! N1.L
�/ such that J1 � N.L/ D N1.L

�/ and
J�1

1 N1.L
�/ D N.L/I

(ii) an orthoprojector PN1.L�/WH2 ! H2 that decomposes the subspace N.L�/ into the direct sum of
closed subspaces

N.L�/ D N1.L
�/˚N2.L

�/; (5)

where N1.L
�/ D PN1.L�/H2; N2.L

�/ D PN2.L�/H2; and PN2.L�/ D PN.L�/ � PN1.L�/ is an
orthoprojector.

Case 2. The subspace N1.L/ � N.L/ is linearly isomorphic to the subspace N.L�/; N1.L/ Š N.L
�/:

In this case, there exist
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(i) a linear, bounded, invertible operator J2WN1.L/ ! N.L�/ such that J2 � N1.L/ D N.L�/ and
J�1

2 N.L�/ D N1.L/I

(ii) an orthoprojector PN1.L/WH1 ! H1 that decomposes the subspace N.L/ into the direct sum of closed
subspaces

N.L/ D N1.L/˚N2.L/; (6)

where N1.L/ D PN1.L/H1; N2.L/ D PN2.L/H1; and PN2.L/ D PN.L/�PN1.L/ is an orthoprojector.

Case 3. The subspace N.L/ is linearly isomorphic to the subspace N.L�/; N.L/ Š N.L�/:

In this case, there exists a linear, bounded, invertible operator J3WN.L/ ! N.L�/ such that J3N.L/ D

N.L�/ and J�1
3 N.L�/ D N.L/:

Denote the extensions of the operators Ji ; i D 1; 2; 3; to the space H1 by xPN1.L�/WH1 ! N1.L
�/ �

N.L�/ and the extensions of the operators J�1
i ; i D 1; 2; 3; to the space H2 by xPN1.L/WH2 ! N1.L/ �

N.L/: In Case 3, we have N1.L
�/ � N.L�/ and N1.L/ � N.L/; and, therefore, xPN1.L�/ �

xPN.L�/ and
xPN1.L/ �

xPN.L/:

Lemma 1. On the subspace H2 	N2.L
�/; the operator xL D LC xPN1.L�/ has the bounded inverse

xL�1
l;r D

8<:.LC
xPN1.L�//

�1
l

(left) if N.L/ Š N1.L
�/ � N.L�/;

.LC xPN.L�//
�1
r (right) if N.L/ � N1.L/ Š N.L

�/:

The general form of the one-sided inverse operators xL�1
l0;r0

is given by the formula

xL�1
l0;r0
D

8<:
xL�1

l
.IH2
� zPN2.L�// (left) if N.L/ Š N1.L

�/ � N.L�/;

.IH1
� zPN2.L//xL

�1
r (right) if N.L/ � N1.L/ Š N.L

�/;

where zPN2.L�/WH2 ! N2.L
�/ and zPN2.L/WH1 ! N2.L/ are arbitrary infinite-dimensional bounded projec-

tors.

Proof. Let N.L/ be isomorphic to the subspace N1.L
�/ � N.L�/:

We show that the operator xL D L C xPN1.L�/ has a bounded left inverse. Since the subspaces R.L/ and
R.PN1.L�// D N1.L

�/ are closed, it follows from (3) and (5) that R.xL/ D R.L/[N1.L
�/ is closed. Since any

closed subspace of a Hilbert space is complementable, for the existence of a left inverse xL�1
l

it is necessary and
sufficient that [1]

N.xL/ D N.LC xPN1.L�// D f0g:

Assume that there exists x0 2 H1; x0 ¤ 0; such that

.LC xPN1.L�//x0 D Lx0 C xPN1.L�/x0 D 0: (7)

Using (7), we obtain

Lx0 2 R.L/; xPN1.L�/x0 2 N1.L
�/:
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The subspaces R.L/ and N.L�/ complement one another, R.L/
T
N.L�/ D 0; and N1.L

�/ � N.L�/:

Therefore, R.L/
T
N1.L

�/ D f0g; which implies that they have only one common element (the zero element),
i.e., Lx0 D 0 and xPN1.L�/x0 D 0: This implies that x0 2 N.L/ and x0 2 N. xPN1.L�// � R.L�/: Since
the subspaces N.L/ and R.L�/ complement one another, using (3) we get N.L/ \ R.L�/ D f0g: This yields
x0 D 0: The contradiction obtained proves that N.xL/ D f0g:

Thus, the operator LC xPN1.L�/ has a left inverse.
Since the image R.xL/ D R.L/˚N1.L

�/ of the operator xL does not coincide with the entire space H2; one
cannot speak of the boundedness of the operator xL�1

l
on the entire space H2: Since the subspace H2 	N2.L

�/

is closed, it is a space. The operator xL establishes a one-to-one correspondence between the spaces H1 and
H2	N2.L

�/: Therefore, according to the Banach theorem [8], the boundedness of the operator xL�1
l

is guaranteed
only if we consider its action from the space H2 	N2.L

�/ onto the space H1:

The left inverse operator xL�1
l

is not uniquely defined. Using the results of [1], we represent the collection of
left inverse operators in the following general form:

xL�1
l0
D xL�1

l PR.xL/;

where PR.xL/ is an arbitrary bounded projector to the image of the operator xL: It follows from (5) that the projector

IH2
� zPN2.L�/ possesses this property, i.e., R.IH2

� zPN2.L�// D R.xL/; where zPN2.L�/WH2 ! N2.L
�/ is

an arbitrary infinite-dimensional bounded projector, which can be constructed in the general form by using the
Sobczyk lemma [9]. This implies that the family of left inverse operators admits the representation

xL�1
l0
D xL�1

l .IH2
� zPN2.L�//:

Now let N.L�/ be isomorphic to the subspace N1.L/ � N.L/: We show that the operator xL D LC xPN.L�/

has a bounded right inverse. Since N.L/ is complementable in H1; by virtue of (3) and (6) the subspace N.xL/ is
complementable in H1: Thus, for the proof of the existence of a right inverse operator, it is necessary and sufficient
to show that [1]

R.xL/ D R.LC xPN1.L�// � H2:

Since N.L�/ is isomorphic to N1.L/ � N.L/; we have xPN1.L�/ �
xPN.L�/WH1 ! N.L�/: By the

definition of the operators xL and xPN.L�/; for an arbitrary element x 2 H1 we have

xLx D Lx C xPN.L�/x;

where Lx 2 R.L/ and xPN.L�/x 2 N.L
�/: Since the subspaces R.L/ and N.L�/ complement one another in

the Hilbert space H2; we have R.xL/ � H2:

Thus, the operator LC xPN1.L�/ has a right inverse.
Since the operator xL establishes a one-to-one correspondence between the spaces H1 	 N2.L/ and H2; it

follows from the Banach theorem [8] that the right inverse operator xL�1
r is bounded.

The right inverse operator is also not uniquely defined. Using the results of [1], we represent the collection of
right inverse operators in the following general form:

xL�1
r0
D PN.xL/ �

xL�1
r ;

where PN.xL/ is an arbitrary projector that has the property N.PN.xL// D N.xL/: It follows from (6) that the

projector IB1
� zPN2.L/ possesses this property, i.e., N.IB1

� zPN2.L// D N.xL/; where zPN2.L/WH1 ! N2.L/
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is an arbitrary infinite-dimensional bounded projector, which can be constructed in the general form by using the
Sobczyk lemma [9]. This implies that the left inverse operators admit the following general representation:

xL�1
r0
D .IH1

� zPN2.L//xL
�1
r :

The lemma is proved.

Remark 1. If L is a Noetherian operator .indL D dim kerL � dim kerL� D s � k <1/; then Lemma 1
reduces to Lemma 2.4 in [10, p. 66].

In Case 3, where the subspace N.L/ is isomorphic to N.L�/; the following statement is true:

Lemma 2. The operator xL D LC xPN.L�/ has the bounded inverse

xL�1
D .LC xPN.L�//

�1
:

Proof. If N.L/ is isomorphic to N.L�/; then N1.L/ � N.L/ and N1.L
�/ � N.L�/: In this case, the

operator xL has left and right inverses, and, consequently, there exists a unique bounded inverse xL�1:

The lemma is proved.

Remark 2. If a normally solvable operator L acts from a Hilbert space H into itself and N.L/ is isomorphic
to N.L�/; then it is called a reducible invertible operator. In this case, the lemma coincides with Theorem 1.6 in
[11, p. 28].

Remark 3. If L is a Fredholm operator .indL D 0/; then Lemma 2 coincides with the known Schmidt
lemma [8, p. 231].

Consider some relations for the “skew” projectors PN.L/ and PN.L�/; orthoprojectors PN.L/ and PN.L�/;

linear operators xPN1.L/ and xPN1.L�/; and operators xL�1
l0;r0

:

Lemma 3. The orthoprojectors PN.L/ and PN.L�/ and operators xPN1.L/ and xPN1.L�/ satisfy the rela-
tions

PN.L�/
xPN1.L�/ D

xPN1.L�/PN.L/ D
xPN1.L�/;

PN.L/
xP xPN1.L/ D

xPN1.L/PN.L�/ D
xPN1.L/:

(8)

Proof. We prove the first relation in (8). Let x 2 H1: Then xPN1.L�/x 2 N1.L
�/ � N.L�/ and, hence,

PN.L�/
xPN1.L�/x D xPN1.L�/ x because PN.L�/N.L

�/ D N.L�/: Therefore, PN.L�/
xPN1.L�/ D

xPN1.L�/:

Let x 2 N.L/: Then PN.L/x D x: Acting by the operator xPN1.L�/ on both sides of the last equality, we
obtain xPN1.L�/PN.L/x D xPN1.L�/x: Therefore, xPN1.L�/PN.L/ D

xPN1.L�/:

The second relation in (8) is proved by analogy.

Note that Lemma 3 remains true if the orthoprojectors PN.L/ and PN.L�/ are replaced by the “skew” pro-
jectors PN.L/ and PN.L�/:
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Lemma 4. The orthoprojectors PN.L/ and PN.L�/ and “skew” projectors PN.L/ and PN.L�/ satisfy the
relations

PN.L/PN.L/ D PN.L/; PN.L/PN.L/ D PN.L/;

PN.L�/PN.L�/ D PN.L�/; PN.L�/PN.L�/ D PN.L�/:

(9)

Proof. We prove the first relation in (9). Let x0 D PN.L/x for any x 2 H1 and PN.L/x0 D x0 for any
x0 2 N.L/: Then, replacing x0 in the last equality by its value PN.L/x; we obtain

PN.L/PN.L/x D PN.L/x 8x 2 H1:

The second relation is proved by analogy.
It has been noted above that the spaces H�i ; i D 1; 2; coincide with the spaces Hi ; i D 1; 2; up to iso-

morphism. The dual spaces H�i are spaces of row vectors y� and x�: The projector PN.L�/ .L�PN.L�/ D 0/

acts on a row vector y� 2 H�2 according to the rule y�P�
N.L�/

: The orthoprojector PN.L�/; in view of its self-
adjointness, acts on this row vector according to the rule y�PN.L�/: Then a relation analogous to the first relation
has the form

y�PN.L�/P�N.L�/ D y
�P�N.L�/:

Applying the operation of conjugation to both sides of the last equality, we obtain the third relation in (9).
The fourth relation is proved by analogy.
The lemma is proved.

Further, we establish some properties of the operators xL �1
l0;r0

and L:

Lemma 5. The operator xL�1
l0;r0

satisfies the relations

LxL�1
l0;r0
D IH2

� PN.L�/;

xL�1
l0;r0

L D IH1
� PN.L/;

(10)

where IH1
and IH2

are the identity operators in the spaces H1 and H2; respectively, and PN.L/WH1 ! N.L/

and PN.L�/WH2 ! N.L�/ are bounded projectors.

Proof. It follows from the definition of a right inverse operator xL�1
r0

that if it exists, then [1]

xL xL�1
r0
D IH2

;

xL�1
r0
xL D IH2

� PN2.L/;

where PN2.L/ is a bounded projector to the subspace N2.L/ � N.L/: If a left inverse operator xL�1
l0

exists, then

xL xL�1
l0
D IH1

� PN2.L�/;
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xL�1
l0

xL D IH1
;

where PN2.L�/ is a bounded projector to the subspace N2.L
�/ � N.L�/:

Since PN.L�/
xPN1.L�/ D

xPN1.L�/; LPN2.L/ D 0; and PN.L�/L D 0; acting by the operator xL on both
sides of the first relation in (10) from the right, we obtain the identity

L D LIH1
D L xL�1

l0

xL � .IH2
� PN.L�//xL D .IH2

� PN.L�//.LC xPN1.L�//

D L � PN.L�/LC xPN1.L�/ � PN.L�/
xPN1.L�/ D LC xPN1.L�/ �

xPN1.L�/ D L;

which proves the indicated relation.
Further, since LPN.L/ D 0 and PN.L�/L D 0; acting by the operator L on the second relation in (10) from

the left, we obtain the identity

L D LC PN.L�/L D .IH2
� PN.L�//L D LxL

�1
l0;r0

L � L.IH1
� PN.L// D L;

which proves the indicated relation.
The lemma is proved.

Using the lemmas proved above, we can propose a procedure for the construction of one-sided pseudoinverse
operators for a normally solvable operator.

Left and Right Pseudoinverse Operators for a Normally Solvable Operator

Definition 1. An operator LCr WH2 ! H1 that satisfies the conditions

LLCr L D L;

LCr LL
C
r D L

C
r ; (11)

.LLCr /
�
D LLCr D IH2

� PN.L�/

is called a right pseudoinverse of a normally solvable operator L:

Definition 2. An operator LC
l
WH2 ! H1 that satisfies the conditions

LLC
l
L D L;

LC
l
LLC

l
D LC

l
; (12)

.LC
l
L/� D LC

l
L D IH1

� PN.L/

is called a left pseudoinverse of a normally solvable operator L:
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It is obvious that an operator that is simultaneously a left pseudoinverse and a right pseudoinverse is a pseu-
doinverse operator in the Moore–Penrose sense.

The theorems presented below describe the structure of one-sided pseudoinverse operators.

Theorem 1. The operator

LCr D
xL�1

l0;r0
.IH2
� PN.L�// D

8<:
xL�1

l0
.IH2
� PN.L�// if N.L/ Š N1.L

�/ � N.L�/;

xL�1
r0
.IH2
� PN.L�// if N.L/ � N1.L/ Š N.L

�/

is a bounded right pseudoinverse of a normally solvable operator L:

Proof. Let us verify properties (11). For definiteness, let

N.L/ � N1.L/ Š N.L
�/:

It follows from Lemma 1 that there exists a right inverse operator xL�1
r0
:

First, we verify the third condition in (11). We have

LLCr D L
xL�1

r0
.IH2
� PN.L�// D .IH2

� PN.L�//.IH2
� PN.L�//

D IH2
� PN.L�/ � PN.L�/ C PN.L�/PN.L�/ D IH2

� PN.L�/

D .IH2
� PN.L�//

�
D .LLCr /

�

because PN.L�/PN.L�/ D PN.L�/ by virtue of the fourth relation in (9).
Further, we verify the first and the second condition in (11). We have

LLCr L D .IH2
� PN.L�//L D L � PN.L�/L D L

because PN.L�/L D 0; and

LCr LL
C
r D L

C
r .IH2

� PN.L�// D L
C
r �
xL�1

r0
.IH2
� PN.L�//PN.L�/

D LCr �
xL�1

r0
.PN.L�/ � PN.L�// D L

C
r

because P 2
N.L�/

D PN.L�/:

It is easy to verify that the fourth condition in (2) is not satisfied. Indeed,

LCr L D
xL�1

r0
.IH2
� PN.L�//L D xL

�1
r0
L D IH1

� PN.L/

because, by virtue of Lemma 5, we have xL�1
r0
L D IH1

� PN.L/; where PN.L/WH1 ! N.L/ is a projector.
The boundedness of the right pseudoinverse operator LCr follows from the boundedness of the operators

xL�1
l0;r0

and IH2
� PN.L�/:
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Theorem 2. The operator

LC
l
D .IH1

� PN.L//xL
�1
l0;r0
D

8<:.IH1
� PN.L//xL

�1
l0

if N.L/ Š N1.L
�/ � N.L�/;

.IH1
� PN.L//xL

�1
r0

if N.L/ � N1.L/ Š N.L
�/

is a left pseudoinverse of a normally solvable operator L:

Proof. The proof of Theorem 2 is analogous to the proof of Theorem 1.

Pseudoinverse Operator for a Linear, Bounded, Normally Solvable Operator

Using Theorems 1 and 2, we can obtain a formula for a pseudoinverse of a normally solvable operator in a
Hilbert space.

Theorem 3. The operator

LC D LC
l
.IH2
� PN.L�// D .IH1

� PN.L//L
C
r (13)

is the unique bounded operator pseudoinverse to a normally solvable operator L:

Proof. Let us verify properties (2), which define a pseudoinverse operator. For definiteness, let N.L/ Š
N1.L

�/ � N.L�/: By virtue of Lemma 1, this implies that there exists a left inverse operator xL�1
l0
:

Since

L.IH1
� PN.L// D L; .IH2

� PN.L�//L D L; PN.L�/L D 0;

we obtain

LLCL D L.IH1
� PN.L//xL

�1
l0
.IH2
� PN.L�//L D LxL

�1
l0
L D .IH2

� PN.L�//L D L;

which proves the first property.
Taking into account that LxL�1

l0
D IH2

� PN.L�/ by virtue of Lemma 5, and PN.L�/PN.L�/ D PN.L�/ by
virtue of Lemma 4, we get

LCLLC D LCL.IH1
� PN.L//xL

�1
l0
.IH2
� PN.L�// D L

CLxL�1
l0
.IH2
� PN.L�//

D LC.IH2
� PN.L�//.IH2

� PN.L�// D L
C.IH2

� PN.L�/ � PN.L�/ C PN.L�// D L
C;

which proves the second property.
Let us verify the third and the fourth property. We have

LLC D L.IH1
� PN.L//L

�1
l0
.IH2
� PN.L�// D LL

�1
l0
.IH2
� PN.L�//

D .IH2
� PN.L�//.IH2

� PN.L�// D IH2
� PN.L�/ D .LL

C/�;
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LCL D LC
l
.IH1
� PN.L�//L D L

C

l
L D IH1

� PN.L/ D .L
CL/�

because LC
l

is a left pseudoinverse operator.
The boundedness of the pseudoinverse operator LC follows from the boundedness of the one-sided pseudoin-

verse operators LCr and LC
l

and orthoprojectors IH1
� PN.L/ and IH2

� PN.L�/:

The theorem is proved.

Remark 4. If L�WH2 ! H1 is a generalized inverse operator that possesses properties (1), then, using a
formula analogous to (13), we can prove that the operator

LC D .IH1
� PN.L//L

�.IH2
� PN.L�//

is the unique pseudoinverse of a normally solvable operator L:

Using the formula for the pseudoinverse operator LC proposed in Theorem 3, we can find an explicit formula
for a general solution of the linear operator equation (4) with a linear, bounded, normally solvable operator L:

Theorem 4. Let LWH1 ! H2 be a normally solvable operator. Equation (4) is solvable for those and only
those y 2 H2 for which

PN.L�/y D 0: (14)

In this case, Eq. (4) has a family of solutions representable in the form of the direct orthogonal sum

x D Qx C Nx D PN.L/ Ox C L
Cy; (15)

where Qx is a general solution of the corresponding homogeneous equation Lx D 0; Nx is the unique particular
solution of the inhomogeneous operator equation (4), and Ox is an arbitrary element of the space H1:

Proof. It follows from (3) that a general solution of Eq. (4) is the direct orthogonal sum of a general solution
Qx of the homogeneous equation Lx D 0 corresponding to Eq. (4) and the unique particular solution Nx D LCy

of the inhomogeneous equation (4). It follows from the definition of an orthoprojector to the null space N.L/ of
an operator L that a general solution of the homogeneous equation Lx D 0 can be represented in the form

Qx D PN.L/ Ox:

Since the linear operator equation (4) is normally solvable, it is necessary and sufficient for its solvability
[8] that y be orthogonal to any vector from the null space N.L�/ of the adjoint operator L�: Since R.L/ D
N.PN.L�// and R.L/ and N.L�/ are mutually orthogonal and complement one another in the space H2; this
condition is equivalent to condition (14), which guarantees that the element y belongs to the image R .L/ of the
operator L:

Substituting solution (15) into the original equation (4) and taking into account the third relation in (2) and
condition (14), we obtain

Lx D LPN.L/ Ox C LL
Cy D LLCy D .IH2

� PN.L�// y D IH2
y � PN.L�/y D IH2

y D y

because LPN.L/ D 0:

The theorem is proved.
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If condition (14) is not satisfied, i.e., y does not belong to the image R.L/ of the operator L; then the oper-
ator equation (4) does not have a solution. In this case, problem (4) is ill posed and has a so-called pseudosolution
[12], which minimizes the norm of the residual kLx � ykH2

:

Example 1. Let us find solvability conditions and the general form of a solution for the operator equation

Qx D y; (16)

where the linear matrix operator

Q D

0BBBBBBBBBBBB@

1 �1 0 0 0 0 : : :

0 0 0 0 0 0 : : :

0 0 1 �1 0 0 : : :

0 0 0 0 0 0 : : :

0 0 0 0 1 �1 : : :

: : : : : : : : : : : : : : : : : : : : :

1CCCCCCCCCCCCA
acts from the real Hilbert space l2 of number sequences x D col .�.1/; �.2/; �.3/; : : : ; �.i/; : : :/ for which

1X
iD1

.�.i//2 <1

into the real Hilbert space l2 of number sequences y D col .�.1/; �.2/; �.3/; : : : ; �.j /; : : :/ for which

1X
jD1

.�.j //2 <1:

Let us verify the boundedness of the operator Q in this space. We have

kQkl2 D sup
x2l2;x¤0

kQxkl2

kxkl2
D sup

x2l2;x¤0

sup
j2N

j�.j /j

sup
i2N

j�.i/j

D sup
x2l2;x¤0

sup
j2N

.j�.1/ � �.2/j; 0; j�.3/ � �.4/j; 0; : : :/

sup
i2N

j�.i/j

� sup
x2l2;x¤0

sup
j2N

.j�.1/j C j�.2/j; 0; j�.3/j C j�.4/j; 0; : : :/

sup
i2N

j�.i/j
� 2

sup
j2N

j�.j /j

sup
i2N

j�.i/j
D 2



762 V. F. ZHURAVLEV

because

sup
i2N

.j�.i/
j C j�.iC1/

j/ � 2 sup
i2N

.j�.i/
j; j�.iC1/

j/:

Thus, the operator QW l2 ! l2 is bounded.
The orthoprojectors PN.Q/ and PN.Q�/ have the form

PN.Q/ D diag

8̂̂<̂
:̂
0BB@
1

2

1

2

1

2

1

2

1CCA ;
0BB@
1

2

1

2

1

2

1

2

1CCA ; : : :
9>>=>>; ;

PN.Q�/ D diag

¼ 
0 0

0 1

!
;

 
0 0

0 1

!
; : : :

½
:

The pseudoinverse operator QC has the form

QC D diag

8̂̂<̂
:̂
0BB@
1

2
0

�
1

2
0

1CCA ;
0BB@
1

2
0

�
1

2
0

1CCA ; : : :
9>>=>>; :

By virtue of Theorem 4, the operator equation (16) has a bounded solution for those and only those

y 2 l2; y D col .�.1/; �.2/; �.3/; : : :/;

for which

PN.Q�/y D

0BBBBBBBB@

0 0 0 0 : : :

0 1 0 0 : : :

0 0 0 0 : : :

0 0 0 1 : : :

: : : : : : : : : : : : : : :

1CCCCCCCCA

0BBBBBBBBBBBBBB@

�.1/

�.2/

�.3/

�.4/

: : :

�.i/

: : :

1CCCCCCCCCCCCCCA
D

0BBBBBBBBBBBBBB@

0

�.2/

0

�.4/

: : :

�.2k/

: : :

1CCCCCCCCCCCCCCA
D 0: (17)

The solvability condition (17) is satisfied, e.g., for

y 2 l2; y D col .�.1/; 0; �.3/; 0; �.5/; 0; : : :/:

For these vectors, the operator equation (16) has a solution x 2 l2 bounded on R.Q/ of the following form:
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x D PN.Q/ Ox CQ
Cy

D

0BBBBBBBBBBBBBBBB@

1

2

1

2
0 0 0 : : :

1

2

1

2
0 0 0 : : :

0 0
1

2

1

2
0 : : :

0 0
1

2

1

2
0 : : :

: : : : : : : : : : : : : : : : : :

1CCCCCCCCCCCCCCCCA

0BBBBBBBBB@

O�.1/

O�.2/

O�.3/

O�.4/

: : :

1CCCCCCCCCA
C

0BBBBBBBBBBBBBBBB@

1

2
0 0 0 : : :

�
1

2
0 0 0 : : :

0 0
1

2
0 : : :

0 0 �
1

2
0 : : :

: : : : : : : : : : : : : : :

1CCCCCCCCCCCCCCCCA

0BBBBBBBB@

�.1/

0

�.3/

0

: : :

1CCCCCCCCA

D

0BBBBBBBBBBBBBBBB@

1

2
. O�.1/

C O�.2/
C �.1//

1

2
. O�.1/

C O�.2/
� �.1//

1

2
. O�.3/

C O�.4/
C �.3//

1

2
. O�.3/

C O�.4/
� �.3//

: : :

1CCCCCCCCCCCCCCCCA
;

where Ox D col . O�1; O�2; O�3; : : : ; O�i ; : : :/ is an arbitrary element of the Hilbert space l2; the vector

col
�
1

2
. O�.1/

C O�.2//;
1

2
. O�.1/

C O�.2//;
1

2
. O�.3/

C O�.4//;
1

2
. O�.3/

C O�.4//; : : :

�
is a general solution of the homogeneous equation Qx D 0; and the vector

col

 
�.1/

2
;�
�.1/

2
;
�.3/

2
;�
�.3/

2
; : : :

!

is the unique particular solution of the operator equation (16).
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