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PERIODIC SOLUTIONS OF NONLINEAR AUTONOMOUS SYSTEMS IN CRITICAL CASES 

A. A. Boichuk, V. F. Zhuravlev, 
and S. M. Chuiko 

UDC 5i8:517.948 

We obtain coefficient conditions of existence and an iterational algorithm for 
constructing periodic solutions of weakly perturbed autonomous nonlinear differen- 
tial systems in critical cases in the presence of multiple roots for generating 
amplitudes. 

I. Statement of the Problem and Notation. We consider the problem of finding coeffi- 
cient conditions of existence of periodic solutions and their construction for weaklv-non- 
linear autonomous systems: 

dz/dt = Az + ~Z(z,~). (1) 

Here we investigate the critical case in which the (n • n)-dimensional matrix A has char- 
acteristic numbers on the imaginary axis of the form iki~/T, k = 0, • .... ; i = ~--~; Z(z, E) 
is an n-dimensional vector-valued function belonging to the class of functions continuously 
differentiable in the first argument and continuous in the second, (Z (.,e) E C1111z--zoiI~q], 
Z(z, .)E C[0. e,,!), in a neighborhood of generating solutions. A generating system, obtained 
from Eq. (I) for s = O, 

dz/dl = Az (2) 

has an m-parameter family of generating T-periodic solutions of the form 

z (t, c) = X~  (t) c, c ~ R ~, ( 3 )  

where Xm(t) is an (n • m)-dimensional matrix whose columns comprise a complete system of 
m linearly independent T-periodic solutions of system (2). 

We find conditions of existence of periodic solutions of system (I), which for c = 0 
revert into one of the generating solutions (3) of system (2). 

As is well known [1-3], the problem of finding periodic solutions of autonomous systems 
differs in an essential way from the analogous problems for nonautonomous systems in that, in 
contrast to the latter, a period of a desired solution of system (I) is unknown and depends 
on the parameter ~: T1(e) = T(I + ~(E)). The quantity ~ = ~(~), a(0) = ~* is subject to 
definition in the process of finding the solution itself. Moreover, in finding a periodic 
solution of period Tl(s) of system (i) that reverts to a generative T-periodic solution (3) 
for ~ = 0, we can, with no loss of generability, assume [2] the last component of the m-dimen- 
sional column sE R ~ to be zero, so that the generative solution (3) will depend on the (m - 
l)-th constant ~E R~- ' ;c  = col ~,0) ER ~o 

Making a change in the independent variable t = z(l + ca), we reduce problem (i) to the 
problem of finding a T-periodic solution z(~, g) of the system 

z = A z §  +e~)Z(z,e)} (dz /dx=z) ,  (4) 

which reverts for ~ = 0 into one of the generating T-periodic solutions 

Zo(T,~=X~_,(~)c, eRR "-~, (5) 

where Xm_l(z) is an In • (m -- l)]-dimensional matrix analogous to the matrix Xm(~) minus its 
m-th column. 
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2. Necessary Condition of Existence. By the traditional change of independent variable 

we reduce problem (4) to the problem of finding a T-periodic solution x(T, g)E C[~] of the 
system 

x = Ax  + ~{~A(zo + x) + (1 + ~ ) Z ( z o  + x,~)}, (7)  

which reverts for E = 0 to the null solution x(~, 0) = 0. 

It is easy to establish [2] a necessary condition of existence of a T-periodic solution 
of system (7) and, by the same token, also a T1(E)-periodic solution of system (i). 

THEOREM i. Let the autonomous differential system (i) have a periodic solution z(t, E) 
with period Tl(s) = T(I + E~), which reverts for ~ = 0 to a generating T-periodic solution 

z0(t, c*) (5) with constant ~E~-I, where ~(0)=~*~R I. Then the vector constant c*=col(~, 
~*)ER m satisfies the equation 

T 

F (e) = t H (s) {~Azo (s, ~) + Z (Zo (s, 7), 0)} ds = O. ( 8 )  
0 

By analogy with the case of the periodic problem for a nonautonomous system [2, 4], we 
refer to Eq. (8) as an equation for generting amplitudes of the problem for periodic solu- 
tions of the autonomous system (i). H(t) is an (m • n)-matrix whose rows constitute a com- 
plete system of m linearly indpendent T-periodic solutions of the system conjugate to system 
(2). 

As in the nonautonomous case, Eq. (8) determines the amplitude of a generating solu- 
tion, i.e., the (m - l)-dimensional vector constant c*. In addition, Eq. (8) yields the 
scalar constant ~*, characterizing the first correction to the period of the sought-for solu- 
tion. As a result, just as in the nonautonomous case, Eq~ (8) consists of m equations 
(algebraic or transcendental) for the m unknowns c = col(c, ~) 6 R m. 

Since the analysis takes us into the real domain, the discussion centers on the real 
roots of Eq. (8). 

3. Sufficient Conditions of Existence. Simple Roots of the Equation for Generating 
Amplitudes. We determine sufficient conditions for the existence of periodic solutions 

z(t, e) 6 C[~], z(t, 0) =z0(l, ~) with period Tl(~) = T(I + g~), ~(0) = ~* of the autonomous sys- 
tem (i), where c* = col (5*, ~*) satisfy Eq. (8) for generating amplitudes. By virtue of 
relations (3) and (6), we shall solve the problem of finding conditions for the existence of 
T-periodic solutions x(~,e) E C[~], x(T, 0) = 0 of system (7). 

We assume that c* is a simple root of Eq. (8). The condition det [8F(c)/8c] ~ 0 for 
simplicity fo a root c = c* of the equation for generating amplitude is equivalent to the 
condition 

det B o ~ 0 ,  (9 )  
T 

where B 0 = .[ H (s) AI (s) ds is an (m • m)-dimensional matrix, AI (s) = I(~*A + AI (s)) X~_, (s), AXe_, (s) ~] 

@Z(z,O) z=z,(s is an (n • n)-dimensional matrix. is an (n • matrix, and At(s) = az 

Indeed, from Eq. (8) we have 
T Y 

OF(c) I = ~ H(sll~*AX~_,(sl, AXm-,(s)?lds + .f H (sllA~(s)X~-'(sl'Olds= B~ 
~C c=--c" o o , 

where the square brackets contain block matrices of dimensions n x (m - i) and n • i, respec- 
tively. 

In system (7), considering the expression in the braces as a non-homogeneity, we pro- 
ceed, by analogy with [4, 5], from a periodic boundary value problem for system (7) to the 
following equivalent operator system on the set x(~, ~)6 C[gJ, x(~,O) = O: 

x (~, ~) = X ~ _ ,  (~) ~ +  x ~1' (~, ~), 
r 

S H (s) {~A (z o (s, c*) + x (s, e)) + (1 + e~) Z (z o + x, ~)} ds = O, 
0 
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T 

x O~ (z, g) = g ~ G(T, s){~A (z o + x) + (l + ~r  o + x,a)} ds, 
0 

where G(t, ~) is the generalized Green's matrix of the problem concerning T-periodic solu- 
tions of system (2) [5, 6]. 

Separating out from the vector-valued function Z(z 0 + x, g) the linear part in x and the 
zero-order terms in s, we obtain 

Z (z o + x,  ~) = Z ( z  o, O) + A~ (~) x + re(x, e), ( 1 0 )  

where ~ (0 ,0 )  = o,a,~(o,m/ax = o. 

We therefore have the following representation for the expression in braces {.,.}: 

where 

Taking 
amplitudes, 
periodic 

where 1~ = 

{...) = c~A (z o + x) + (1 + e~) Z (z o + x, ~) = ~*Az o + Z (z o, O) + 

+ (~z*A + A~ (~)) x + gAzo + -~A.v + m (x, ~,) + ~ Z  (Zo + x, a) = 

= :o ('r, c*) + .~  ('Oc+(cz*A § A~ ('~))~'~> ('r, e) + R (x (% s), e), 

into account the 
we obtain 

solution x(x, 

fo (% c*) = o~*Azo (~, c*) + Z (z,, (,,-c*), 0), 

R (x, ~) = ~ A x  + q~ (x, ~) + ,c~Z (zo + x, ~), 

= ~ - -  c~* R (0, O) = O, a R  (0, o ) / a x  = o. 

fact that the constant c * ~ R  'n satisfies Eq. (8) for generating 
the following equivalent operator system for the determination of a T- 
~)~ C[a],x (~,0) = 0 of the boundary value problem (7): 

x (~, ~) = Xm--~ (X) I~C + x ~ (~, ~), 

r 
B~c = - -  .~/-/(s) {(~*A + A~ (s)) x~'~ (s, ~) + R (x, ~)} ds, 

0 

T 

x") (x, s) = ~ i G (T, s) {fo (s, c*) + A,  (s) c +  ( a * A + A  1 (s)) xr (s, ~) + R (x, e} ds, 

1 ... 0 0 i s  a n  [ (m  - 1)  • m ] - d i m e n s i o n a !  m a t r i x .  

0 ... 1 0 

(11) 

(12) 

The operator system (12) belongs to the class of systems of the form (5.11) in [4] for 
whose solution we apply the method of simple iterations converging on [0, c0]. Thus we have 
the following theorem. 

THEOREM 2. Assume that system (4) satisfies the conditions indicated above. Then for 
each simple (detB 0 ~ 0) root c" =col (c, ~*) 6 R m of Eq. (8) for generating amplitudes the sys- 
tem (4) has a unique T-period solution z(%.e) 6 C[e], reverting for s = 0 into the generating 
solution z0(%, c*) of (5). This solution can be determined with the aid of the following 
iterational process converging on [0, e0]: 

T 

c~ = - -  B~' t' h' (s) {(~*A -i A, (s)) x~', (s, 8) + R (xh (s, e), ~)} ds, 
6 

T 

x,~ (-~, s) = ~ ( c 0 ,  s) {/o (s, c,~ + / T ,  (s) c,, + (,=*A + A~ (s)) x~ '~ (s, ~) + R (x~, 8)} ds, k+] 

x~_~ ('r, ~) = X,~_~ ('0 1,c,, + x ~  ('c, ~), 

zk+~ (r, ~) = zo (~, ~*} ~- xk+~ (T, ~), k = O, I, 2 . . . .  : Xo (~, ~) = x(o ~ (~, ~)= O. 

With a change of independent variable taken into account, the iterational scherae (13) 
yields a periodic solution with period TI(a) = T(I + ~), ~(0) = ~* of the autonomous system 
(i). Moreover, the m-th component of the vector constant cl~= Ch (S) = CO1 (Ch,~j~)~. R"' will yield 
approximations ak = ~k(e) to ~(e)~/~L 

(13) 
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As in the case of nonautonomous systems [4], we refer to the case detB 0 ~ 0 as a criti- 
cal case of the first order. It is distinguished by the fact that it furnishes an answer 
to the problem of the existence of a T-periodic solution of system (4), following an analysis 
of the system of equations used for finding a first approximation xz(~, s) to the desired 
solution 

4. Multiple Roots of the Equation for Generating Amplitudes. We assume now that c = c* 
is a multiple root of Eq. (8) for generating amplitudes, i.e., detB 0 = 0. Let P0 and P!*) 
denote orthoprojectors onto the origin of the spaces N(B 0) and N(B~) of matrices B 0 and B~ = 
B~, respectively. The second equation in system (12) is then solvable if and only if 

r 

0 

H (s) {(~*A + A~ (s)) x O~ (s, s) + R (x (s, s), s)} ds = 0, (14) 

and then has the solution 

T 

c = - -  B$ I H (s) {(~*A + A, (s)) xn~ (s, s) + R (x, s)} ds + c ~ = (1 - -  Po) c~~ + Po cO', 
o 

where B 0 is the unique pseudo-inverse matrix to B~ [7]; 

c ~ ~ 1 7 6  ~@N(Bo) ,  c ~ = p o  c = P o c ~ N ( B o ) .  ( i 5 )  

Substituting relation (15) into the third equation of system (12), we obtain 

x "~ (~, g) = SOl (~) Po cO~ + x ~ (~, g), 01 (~) ~ f O(~, s)A~ (S) PodS, 
o (16 )  

T 

x~)(~, ~) = ~ ~ 6(~ ,  ~ {:o (~, c*) + A1 (~ (l - -  Po) c (~ + 
o 

§ (~*A + A, (s))(eG~ (s) Po cO) + x (2) (s, 8)) + R(x(s ,  ~), ~)}ds. 

To o b t a i n  an e q u i v a l e n t  o p e r a t o r  s y s t e m  o f  t y p e  ( 1 2 )  f o r  t h e  c a s e  d e t  B 0 = 0 we n e e d  t o  
revise expansion (ii) by writing out explicitly the terms linear in x and in ~. To do this 
we require the additional condition of continuous differentiability with respect to s of the 
vector-valued function Z(z 0 + x, ~), which we assume: Z(z, .)6 Cll~],e~ [0, eo]. We then write 
relation (i0) in the form 

where ~(0,0)=0, 
dimensional matrix. 

Expansion (Ii) 

where 

( 1 4 )  

Z (z o + x, ~) = Z (z o, 0) + A1 (z) x + eA~ (z) x § % (x, ~), 

Oqh(O,O)/Ox = O, ~)'-'~ (0, O ) / a x a ~  O, and A~ (z) ~ cT-Z(z,s)c)e3z IZ=:o~*.s i s  an (n x n ) -  

e = 0  

t h e n  t a k e s  t h e  f o r m  

{...} = fo IT, c*) + A~ (~) c + {~*A + A1 (~)) x "1 (~, e) + ~Ax + eA~ (~) x + 

+ ~1 (x, ~) § ~cz*Z (z o, O) + va*A1 ('c) x + ~:'~x*Ao ('~, x + e~*~l (x, e) + 

+ c~.Z (zo, O) + ~A~ ('0 x + ~.~ (x, ~.) = 1o ('~, c*) + -_4, (z) c + 

+ (cc*A -+- A 1 (z)) x (1) ('t:, g) § (" (cz*A 1 ('t') § A 2 ('t:)) (X, .- t  (z) c § x ~1~ ('r e)) § 

+ e~Z (Zo, 0) + . . . .  lo (z, c*) + A~(~)C+ (~*A + AI (z)) x"'  (z, e) + ~ (,) c + R~ (x, ~), ( 11 ' ) 

Ao (z) = [(~*A1 (~) + A~ (z)) X~_,  (T), Z (z o, 0)] i s  an (n  • m ) - d i m e n s i o n a l  m a t r i x ,  and  

f~1 Ix, e) .~- [zAx + % (x, e) + e~*Z (zo, 0) + e la*Al (z) + A2 (z)) x ~ (z, s + 

+ ~c~*A~ (~) x + ecc*q~ (x, e) + e~.A~ (~) + e ~  (x, s); 

R~ IO, O) = O, OR~ (0, O)lax = O. 

Upon t a k i n g  e x p r e s s i o n s  ( 1 5 ) ,  ( 1 6 ) ,  and  ( 1 1 ' )  i n t o  a c c o u n t ,  we o b t a i n  f r o m  r e l a t i o n  
an e q u a t i o n  f o r  d e t e r m i n a t i o n  o f  t h e  u n k n o w n c ~ 6 N ( B o ) ~ R ' ~ :  

T 

sB~c~' = - -  P(~ S H (s) {(c~*A + A, (s)) x ~ (s, ~) + s-A~ (s) (I - -  Po) e">~ + R~ Ix, ~)) ds, (17  ) 
o 

1052 



T 

where B~ ---- Pg') f H (s)I(~*A + A, (s)) G~ (s)+ 71+ (s)] Pods is 
0 

Let Pi 

B i and B~ = 
O, Eq. (17) 

an (m • m)-dimensional matrix. 

and Pi*) be orthoprojectors onto zero of the spaces N(Bi) and N(B~) of matrices 
T 

Bi .  Then,  as  in  t h e  c a s e  o f  t h e  nonautonomous  s y s t e m  [3,  4 ] ,  p r o v i d i n g  PI*~P~" 
is uniquely (P0Pi = 0) solvable for ~c(1): 

g 

gC (1) = - -  B ~  S P ~ ' ) H  (s) {(~*A + A 1 (s)) x r (s, 8) + 83~ (s) (1 - -  P0) c(0) + R1 (x, e)} ds,  
0 

where B + is a matrix pseudo-inverse to B i. 

Thus, for the case detB0----0~P0=~0, subject to the condition 

p ( * ) n ( ' )  
l , tO ~ 0 

we proceed from the operator system (12) to the fo l lowing:  

(18)  

x (~, e) = X.~_~ (T) l~ (l - -  Po) c<~ § eG~ (T) Pocm + x <2~ (~, e), 

c <~ = - -  B~ f H (0 {(~*A + Ai (s)) (eO~ (s) P0 c~ + x~e) (s, e)) ~ R (x, e)} ds, 

+ ( i 9 )  
7 

~c ~'' = - B~ .i & ' ~  (s) {(~*A ~- A, (s ) ) /~ '  (s, ~) + ~ (s) (] - -  & ) c  ~~ + ~,  (x, ~)} & 
0 

7 

x <~ (~, e) = e i O (~, 9 {[0 (s, c*) + A ~ (s) (1 - -  Po) c<~ + (~*A + A~ (s)) (ea~ (s) Poc +~ + x ~ )  + R (x, e)} ds. 
0 

The o p e r a t o r  sy s t em (19)  b e l o n g s  t o  t h e  c l a s s  o f  sys t ems  [5,  6] f o r  whose s o l u t i o n s  
we a p p l y  t h e  c o n v e r g e n t  method o f  s i m p l e  i t e r a t i o n s .  To f i n d  a s o l u t i o n  of  sy s t em  (119) and,  
hence  a l s o ,  t o  s o l v e  sy s t em ( 4 ) ,  we s e t  up,  by a n a l o g y  w i t h  p e r i o d i c  nonautonomous  s y s t e m s  
[ 5 ] ,  an i t ~  p r o c e s s  c h a a c t e r i z e d  by t h e  f a c t  t h a t  t h e  answer  t o  t h e  p rob lem c o n c e r n -  
ing  e x i s t e n c e  o f  a p e r i o d i c  s o l u t i o n  o f  sy s t em  (4)  i s  c o m p l e t e l y  d e t e r m i n e d  upon a n a l y z •  
a s y s t e m  of  s econd  a p p r o x i m a t i o n  t o  sy s t em  ( 4 ) .  Re s h a l l  r e f e r  t o  t h i s  c a s e  P0=F=0, PI *~P~'~ = 0  
as a c r i t i c a l  c a s e  o f  t h e  s econd  o r d e r .  Thus we have t h e  f o l l o w i n g  t h e o r e m .  

THEOREM 3. Assume that system (4) satisfies the conditions indicated above, so that 

P o l O ,  P~')P~'>= O. (20) 

Then fo r  each root c = c * = c e l ( ~ , ~ * ) ( R " '  of Eq. (8) for  generating amplitudes, the system (4) 
has, providing 

7 

I e~*~ H(s) {(~*A+ A~ (~) x~ (s, O + R  (x~ (s, ~), O} ds = O, 

(21) 

a unique T-periodic 
of the solutions (5). 
aid of the following 

T 

(Xl (~, g) = e ~ O (T, S) L (S, C*) aS) 
o 

s o l u t i o n  z (~, e)E C [~], r e v e r t i n g  f o r  ~ = 0 t o  a g e n e r a t i n g  s o l u t i o n  z0 (T, 7*) 
T h i s  s o l u t i o n  i s  d e t e r m i n e d  from t h e  o p e r a t o r  s y s t e m  (19)  w i t h  t h e  

i t e r a t i o n a l  p r o c e s s ,  c o n v e r g i n g  on [0 ,  e0 ] :  

/- 

ecg ~ = - B y  t' Pg 'L8 (s) {(e*A + A,  (s)) x f  ~ (s, ~) + ~ (s) (] - -  Po) cg ~ + & (x~,, ~)} as, 

7 
c~~ = - -  B~ I t] (s) ((rz*A + ,4~ (sl) (eG~ (s) Poc~ n + x~ 2)) + R (x~, O}ds, 

7" 

x~+l (~, ~) = ~: s c (T, s) {/0 (s, c*t + 3 ,  (s) (] - -  po) c[. ~ + (~*A + AI (s)) (eO~ (s~ P0c~ '~ + xf>) + R (xkO} ds, 
0 

x~.~,, (r, s = Xm-i (r) 11 (1 - -  P,,) C[ ~ + +'G, ('r) PoCS~ I> -:- "~]e+;'O-) (.~, 8), 

z ~ + t  (~,  e)  = Zo ('c, c* )  -"  xk  '-~ (,c, e) ,  le = O, 1 , 2  . . . .  : Xo (~ ~- ) = .v[, 2~ ( r ,  ~) = O. 

(22) 
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Condition (21) for the existence of a T-periodic solution of system (4) is drawn up with 
the aid of the nonlinearity Z(z 0 + x, c) and the first approximation x1(~, s) to the sought- 
for solution. It is a necessary and sufficient condition for existence of a T-periodic solu- 
tion of the system that serves to define a second approximation to the sought-for solution. 

5. Example. To illustrate the algorithm for studying autonomous systems presented 
above, we consider a problem concerning the existence of periodic solutions of the system 

0 
z = I - - O 1  ~lz+e[(l--z)iz21 =Az~sZ(z)" (23)  

where z = col(z,, z~)E R ~. System (23) describes the oscillations of a vacuum tube oscillator 
under "mild" conditions [8]. Using the notation above, we have 

[ ] [ cos 1 
Xm(' t )=  - -s in 'c  cos'cA Lsin~ cos'~ ' - - s i n z ]  

Equation (8) for generating amplitudes of system (23) has the form 

[' 1 'S I I o =o. 
F ( c ) = c  H (s) ~L__COSS_l + --(l--c~176 T M  2c~ 

0 

We select as a root of Eq. (24) the vector c* =co1(7*,~*)CR z with components c* = 2, ~* = 
0. We then easily construct the matrices 

21 (~) = [ 0 -- 2 sin �9 ] 

sin'~ (12 coE-~-- 1 ) 2 cosTJ ' 

Bo = t' H (s) 74, ( s ) d s  = - - 2 a  
{! 

S i n c e  d e t B  0 z 0, we have t h e  c r i t i c a l  c a s e  o f  t h e  f i r s t  o r d e r ,  i . e . ,  c* -- 2, a* = 0 a r e  
simple roots of Eq. (24) for generating amplitudes of the problem concerning periodic solu- 
tions of the autonomous system (23). Therefore, according to Theorem 2, system (23) has a 
unique periodic solution Ta (s) ~ 2a (| + ~ (B)), ~ (0) = ~* = 0, which reverts for e = 0 to the 
2~-periodic solution z0(~, ~*). 

7. 

8. 

LITERATURE CITED 

N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear 
Oscillations [in Russian], Nauka, Moscow (1974). 
I. G. Malkin, Some Problems in the Theory of Nonlinear Oscillations [in Russian], Gos- 
tekhizdat, Moscow (1956). 
A. M. Samoilenko and N. I. Ronto, Numerical-Analytical Methods for the Study of Solu- 
tions of Boundary Value Problems [in Russian], Naukova Dumka, Kiev (1986). 
E. A. Grebenikov and Yu. A. Ryabov, Constructive Methods for the Analysis of Nonlinear 
Systems [in Russian], Nauka, Moscow (1979). 
O. B. Lykova, and A. A. Boichuk, "Construction of periodic solutions of nonlinear sys- 
tems in critical cases," Ukr. Mat. Zh., 40, No. i, 62-69 (1988). 
A. A. Boichuk, Boundary Problems for Weakly-Perturbed Linear and Nonlinear Systems in 
Critical Cases [in Russian], Preprint, Acad. Sci. UkrSSR, Inst. of Math., No. 39, 
Kiev (1988). 
V. N. Kublanovskaya, "On the calculation of a generalized inverse matrix and projec- 
tors," Zh. Vychisl. Mat. Mat. Fiz., No. 2, 326-332 (1966). 
A. A. Andronov, A. A. Vitt, and S. ~. Khaikin, Theory of Oscillations [in Russian], 
Fizmatgiz, Moscow (1959)o 

1054 


