CONSTRUCTION OF THE SOLUTIONS OF LINEAR OPERATOR EQUATIONS IN BANACH SPACES

A. A. Boichuk and V. F. Zhuravlev UpC 517.43

Formulas are obtained for the construction of the generalized inverse operator,
resolving a linear Noetherian boundary value problem in a Banach space. The first
of them is based on the construction of the generalized Green operator of the ini-
tial semi~homogeneous boundary value problem, while the second one is based on

the application of certain results of the theory of linear operators in Banach
spaces.

It is known [I, 2] that the boundary value problems for the system of functional—dif-

ferential operators
Ay = L.\' -\ = f }
Ix o

in the case when the dimension n of the functional—differential system Lx = f does not
coincide with the dimension m of the vector functional £, are Noetherian. For such problems
Schmidt's construction [3], which gives the possibility to construct the generalized inverse
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operator in the case of a Fredholm (m = n) boundary value problem, cannot be applied. We
present two methods for the construction of the generalized inverse operator A~ of a Noether-
ian operator A in a Banach space. The first of them assumes the use of the properties of the
operator L and is based on the construction of the generalized Green operator [2, 4] of the
initial semi-homogeneous boundary value problem, while the second one is based on the application
of certain results of the theory of operators in Banach spaces, enabling us to obtain an anal-
ogue of Schmidt's construction for Noetherian operators.

1. In the notations of [1, 5] we consider the boundary value problem

Lx::f: (l)
Ix = a, (2)

where L: Dg > LB is a bounded linear operator for which the Cauchy problem Lx = f, x(a) = ¢
is uniquely solvable for any f¢ L) and ¢€R” and its solution has the form

b
iy = X(f)c+ {C(t, ) f (1) dT; (3)
X(t) is the n x n fundamental matrix of the operator L: LX = 0, X(a) = E,, C(t, 1) is the
n x n Cauchy matrix, which everywhere in the sequel will be considered defined in the square
[a, b] x [a, b], setting C(t, ) = 0 for aK</<<71<b: :D,—~R™ 1is a bounded linear vector-
valued functional; L} is the space of n-dimensional vector-valued functions, having summable
p-th powers, 1 < p < 4=, on the finite segment [a, b]; Dg is the space of n-dimensional vec-
tor-valued functions, absolutely continuous on [a, b] and such that x ¢ Lg.

Such problems are, for example, the boundary value problems for ordinary differential
equations [2], equations with delay [6], and problems with impulse actions [7].

Let Q = 2X be an m x n constant matrix; let PQ (PQ#) be the n x n (m x m) orthoprojec-
tion, projecting R® (RM) onto the null-space N(Q) [N(Q*)] of the matrix Q (Q%); let Po, be
the n x r matrix (r = n — rankQ) consisting of r linearly independent columns of the matrix
Pgs let Pox be the d x m matrix (d = m — rank Q) consisting of d linearly independent rows of

the matrix Pg*;let Qt be the unique Moore —Penrose generalized inverse n x m matrix, for the
construction of which there exist detailed algorithms [8, 9].

THEOREM 1. If rankQ = n, < n, then the boundary value problem (1), (2) is solvable for
those and only those f¢l)i and a€¢R" which satisfy the condition

I3
P o —{{Ct, T}f(T)dT}=: 0, (4)

Yo
@

and, moreover, we have an r = n — n,-parameter family of solutions
x(f)= X, (1) ¢, = X (£) Qe -+ (Gf) (¢}, (5)
where X (t) = X(t)Py, is the n x r fundamental matrix of the boundary value problem (1), (2)

and G is the generalized Green operator of the semi-homogenecus boundary value problem (1),
(2), defined in the following manner:
b b

Ghiy=[Ct,0fmdr—X QT 1{C(, nmdr (6)

a a

Proof. The solution (3) of Eq. (1) is a solution of the boundary value problem (1), (2)
if and only if the vector ¢€ K" satisfies the equation
, .
Qe =a—1\C(, 1)f(r)dr. (7)

«

For the solvability of the algebraic system (7) and, consequently, also of the boundary value
problem (1), (2), it is necessary and sufficient [8] that the right-hand side should belong
to the orthogonal complement of the subspace N(Q*), i.e., the condition (4) should hold. In
this case the algebraic system (7) has the solution

b

c::PQg}+-Q+(a——leC(-,T)fﬁjdr}. (8)

g
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Introducing (8) into (3), we obtain the general solution (5) of the boundary value problem

(1), (2).

The constructed generalized Green operator (6) solves the semi-homogeneous boundary

value problem
el
Ix 0

and, as one can easily verify by a straightforward computation, satisfies the following
relations:

b
AGx = col [/*, Po-l { C(-. t)xdt], (9)
a .
lim Gx — lim Gx = | [xdr,
e g A (10)
I3
G»]l L7 \ XPQ*d’L'. (11>

«

Making use of the properties (9)-(11) of the generalized Green operator of the boundary
value problem (1), (2), one can show that the operator

ATw = [Gx, XQ%) (12)

is a generalized inverse [2] of the Noetherian operator A and satisfies its defining [10, 11]
properties:

ATAAT = AT AATA = A (13)

As shown in [10], the second property is a consequence of the first one. We verify the first
property. Since LX = 0, 2X = Q, making use of (9)-(11), we have

AA™ & =[ L } (G#, XQFs) = LGx  LXQ+x _ [.* 0
[ 1Gx  [XQ+x b
Pl [ C (-, tyedr QQHe
Since QTPg. = (Q*Q + Po) Q@ P =0, QTQQT = Q" [8], we have
[n.* 0 - )
“AATE = ot b - + ¢ F00T ] = A”
ATAATx =[G, XQ7] Porl { C (-, Tpsedn QQ+*J_ l[G/,M.XQ Pol [ C (-, mprdT, XQTQQ *] = A7,

a

Thus, the operator A” is a generalized inverse of the Noetherian operator A, Making use of
the form of A and A7, it is easy to verify that

Pae =1 —AAT,
where Pae:L} x Rm~+ker&* is a projection, prOJectlng the space L x R™ onto the kernel of
the operator A% Indeed, since I, - QQt = « [9], we have
I, 0
P ' = ]n* O — b =
A [ 0 Im* Pin .'( C (', T)*d’( QQ+*
0 0 0 0
== h i — b
— Pl {C (- txdy (1, — QQ7 ) |~ | — Pyl (C( Tprdr Poox

. €
a o .

Thus, the action of the projection Ppx on the element y = col (f, a) of the space Lg x R™ is
equivalent to the action of the operator
b
[— PQJ & C( , T)*dT, PQ**J ’
- a
which coincides with the solvability criterion (4) of the Noetherian boundary value problem

(1), (2).
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THEOREM 2. The operator equation Ax = y is solvable for those and only those y¢ L, x R"
which satisfy the condition Pyxy = 0 and, moreover, it has an r-parameter family of solutions
of the form

@y =X, (e, - (ATy)(t), r=dimkerA,
where A~ is the generalized inverse operator defined by formula (12).

2. We indicate another approach to the construction of the generalized inverse operator
of a Noetherian operator A:X » Y, acting from a Banach space X into a Banach space Y.

Let A be a bounded linear Noetherian (dim kerA = r, dimker A* = d) operator, let A* be
the adjoint operator of A, A*:Y* » X*, defined according to [12]

(Vg (x) == g(\y). x€X, ge¥r,
where X* and Y* are the spaces conjugate to the spaces X and Y, respectively. As before, by

N(A), N(A*) and R(A), R(A*) we shall denote the null-spaces (kernels) and the ranges of the
operators A, A%, respectively.

Let {f;}, i = 1,...,r, be a basis of kerA and let {¢}, s =1,...,d, be a basis of
ker A*. As a consequence of the Hahn—Banach theorem [13], there exist linearly independent
functionals v;€X* such that

Vilf s S jee b,
and also linearly independent elements 1, £} such that
G5 (p) = - O s, k=1, ..,d
Follqying [3, 14], we define the projections
Pu X N(A), Pim Py PaiV N\, PPy

according to the formulas

d
\_ (t)fr P‘\'.’/ == \1 e (l/) ’f\v-

S ]
Let p = min(r, d). Then, following [15], we introduce the operators

(N (A S NV, i <,

p
P.x - % ALY, P /\
Py }_ Vi () Y b l N (A", if r>=d

i=1

p _ ' N\ if r<ld
e N . Py} | i’ =
P\I/ ((/)[e A -+|1\,71(A\)§1)V(~\’~ if r>=d

.\—::]
For the construction of the generalized inverse operator we prove the following lemmas.
fLEMMA 1. The operators Pp, Ppx, PA, PA have the following properties:
1) PaPy = PoPy= Dy,
2) PAP . = PyPne — Py,
5
3) PaPyey = N g (),

s=1

We prove, for example, property l1). We have P, FK¥*-\ e '\ Y x) \ . ”“ \ V(X)X
- st = 5—]L’*
§ por
- . ‘S if i, S = 1, o BB \j v v 5.
.= P.x, since ¢, (Pp;) = ¥ P\Pyx = \ Vi Y, Vi) v, = Vi lx) X
(b ;= V‘v,( B =P, since g gy =10 0TS o= (X ufi)n =L Y

v; (F) ;= ): Vs (%) P; = pr since v;(f;) = The remaining properties are veri-

i=1
fied in a similar manner.

8yn A L=l ..p
{ 0, if [>p.
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LEMMA 2. The operator A=A+ §A has a bounded inverse

[(A4 P07 — left, if r<d,
1 (A4 Py7'— right, if >4

AT =

Proof. Let r<Cd. From Theorems 2.1 and 5.1 from [10} there follows that for the exis-

tence of a left inverse operator Aj' of the operator A it is necessary and sufficient that a)
ker A = {0}; b) dimker A% < =,

We show that ker A = {0}. We assume that there exists x, # 0, %,€X such that (A + Py) x
n
X, = 0, from where A\x“::——lgqy(xdlh_ Applying to both sides of the last equality the func-

=1}

tional ¢, s =1,...,d, we obtain

»

0= ) = = N () 0 0 = — 2 )
(|

Thus, y,(x)=0, s= l....p:=r. Since the system of functionals Ygy 5 = 1,...,r, is linearly

independent, by virtue of a consequence of the Hahn-—Banach theorem [13], we have x, = 0.
The obtained contradiction proves that ker A = {0}.

We show that dimkerA* = d — r < ®. For this we find FX. If x€X, g€}, then

T - \ {" ; /)1 . e\
aiPaxy= (Y vb)= Vv ogtrn - VN awv@=(Y e@)v) ),
i=1 i=

(=1 {=1

from where PLg-- N g(y;)y,

faal
We find the general form of the functional g€Y*, satisfying the equation

APy g 0,
from where

Mg e = Ny (14)
-
Applying (14) to the element fy, we obtain

I

0= (\'g) /) = g N o == — N g )yt == —gl k=11

A

-1

Consequently, (14) has the form A%g = 0. From here g = \‘Cﬂ“, where ¢; are basis vectors of
the kernel N(A%*). =

But we have established that g(yy) = 0, k = 1,...,p = r; therefore,

d n o
0=g(yy) = E Cipi ) = _\_: i () -+ }: it ()

=1 i fmptt

§:,, if j k=1, ..p
[ O 2 there follows that c; = 0 for i = 1,...,p

From the fact that ;i) =
B O F N = j

It}

[at

and cj are arbitrary numbers for j =r + 1,...,d and, therefore,
—r
g="N ¢y, s N(\¥), dimker A* - d— r < oo.

f=.1

Thus, we have proved for the case r< 4 the existence of the left inverse operator KQI of the
operator A.

Since the bounded linear operator A is Noetherian and, consequently [15], normally solv-
able, it follows that R(A)_is closed in Y. The closedness and, therefore, also the bounded-
ness of the operator_(A + Py);! follows from the closedness of R(A) and the finite-dimension-
ality of N, (%) = R(P,).

In order to prove the existence of the right inverse operator K'% it is necessary and
sufficient [10] to show that a) ker A% = {0}; b) dimkerA < ». The proof is similar to that
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of the case r<{d. If r = d = p, then M,<_ AT and the formulated lemma turns into Schmidt's
known lemma [3, 14].

-LEMMA 3. The operator .\;, has the following properties

PA7} =Py, (15)
AN =1y — Py, (16)
APy = P, (17)
AijA = [x— Py (18)

. We shall carry out the proof of the lemma for the case r<{d. Since PA A = 0 and PA X
By = Pp, applying on the right the operator A + P, to both sides of (15), we obtain the iden-
tity
PA = pA' (A + pA) = pA\'A + FA'ISA - PA‘,
proQing property (15). Since, by virtue of Lemma 1, Ppx FA = §A and Ppxf = 0, applying to
both sides of (16) the operator A + P, on the right, we obtain an identity that proves prop-
erty (16):

A=(ly —Pp)(A+Pa)=A+Pr—Pped—PPy=0\P, —P, =A.

Since Pi* = Pp%x and AEA* = 0, applying on the left the operator A to both sides of (17) and
making use of (16), we obtain the identity
0= (ly — Pae)Pr- = AAT)P e = APye = 0,

which proves property (17). Applying the operator Azl on the right to both sides of (18)
and making use of the properties (15)-(17), we obtain the identity

ATrly — APy = ATIART) = (Ix — Pa) ATy = xR — POATS,
which proves property (18).
“ For the case r>d the proof of the lemma is carried out in a similar manner.
' The above given lemmas enable us to prove the following theorem [16].

THEOREM 3. The operator

T = AL, — Py (19)
is a bounded generalized inverse of the bounded linear Noetherian operator A.
. For the proof of the theorem we verify that A~ satisfies the properties (13). For this,
first we show that _
AA_=/}’-—P_,V, 1\_1\=/,¥-PA.
Indeed,
A" =ARAT =P =AAT'— AP =/ —P,.,
since

n

n
APx) = AN o)) = N a5 () Ay = 0;

)

ATA = (AT} — Pi) A = ATA — PasA = Iy — Py,

P

n p
since P..(Ax)= ¥ ¢, (Ax)[ = YV (A*q)(x)f;=0. Now we verify property (13). We have
oy oy
ANTA = Ay — Py = A—AP,=A,
A_Ax\_ = (/,\— P\) 1\_ = A—-—PAA—. = A—‘
since PAA‘TzzPAKZ;——P\FAtzzﬁA.——ﬁA-==0 by virtue of Lemmas 1 and 3. Thus, the theorem is

proved.

3. The method, presented in Sec. 1, of the construction of the generalized inverse
operator A~ of the boundary value problem (1), (2) with the aid of the generalized Green
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operator is valid also in the case when the operator L is bounded linear Noetherian [without
the assumption of the solvability for an arbitrary f¢ L, of the Cauchy problem for (1)].

Indeed, let dimkerL = s and let PL*:LE + ker L* be the projection whose construction
is described in Sec. 2. Then Eq. (1) is solvable for those and only those €L, for which

Ppof =0, (20)
and we have an s-parameter family of solutions

) =X W + (LTH, cER,

where Xs(t) is an n x s matrix, whose columns form a basis of kerl, while L™ is the gener-
alized inverse operator (19).

The boundary value problem (1), (2) with a Noetherian operator L: D -> L is solvable if
and only if f€L, and a«€R™ satisfy the conditions (20) and

Popfao— (LT} =0 (dy = m—rank Q,)
dy

and, moreover, it has an r,-parameter family of solutions (r, = n = rankQ,)
x(t) = Xe, ()¢, + X, () Qo+ (G (@),
where Xrl(t) = X (t)PQr is the n x r, fundamental matrix of the boundary value problem (1},

(2), 1 is an s x m constant matrix, the generalized inverse of the m x s matrix Q, = 2Xg
while G, is the generalized Green operator of the semihomogeneous boundary value problem
(1), (2), having the representation

Guh) (6 = (L) () — X, (6) QT LLTD

Moreover, the generalized inverse operator A”, resolving the boundary value problem (1), (2)
with a Noetherian operator L, has the form

A7 =[G %, X.\Q}L*].
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