
N = (c~, r~  (xii. 
Using i t ,  we c o n s t r u c t  a d i f f e o m o r p h i s m  G(z ,  x)  o f  t h e  p u n c t u r e d  r e a i  l i n e  by s e t t i n g  

G (z, x) = (W (z), r (z, x)), 
where 

and 

W (z, x) = 

c + e x p ~ l n z ,  z > 0 ,  

c_exp-2~-~ ln[z t, z < 0 ,  

r (z, x) - -  
exp A~ z) F+ ~ 2~ / 

Let us represent G(z, x) as a composition of mappings, 

0 (z, x) = S~oS7 ~ (z, x), 

St:u~• ~, / = I , 2 .  

Le t  St (~, x) = (Hl(~), ~z(a ,  x)). L e t  us s e t  

~[~xlR'=(Sz)YlR~' l=1 ,2 .  (10) 

Since the composition G = $2"S~ z maps the field R I into the field R2, a formal field of the 
form (i) with the desired properties is well defined by (I0). By construction N(v) = N. The 
theorem is completely proved. 

i. 

2. 
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CONSTRUCTION OF THE SOLUTIONS OF LINEAR OPERATOR EQUATIONS IN BANACH SPACES 

A. A. Boichuk and V. F. Zhuravlev UDC 517,43 

Formulas are obtained for the construction of the generalized inverse operator, 
resolving a linear Noetherian boundary value problem in a Banach space. The first 
of them is based on the construction of the generalized Green operator of the ini- 
tial semi-homogeneous boundary value problem, while the second one is based on 
the application of certain results of the theory of linear operators in Banach 
spaces. 

It is known [i, 2] that the boundary value problems for the system of functional-dif- 
ferential operators 

I  ;I=I :I 
in  t h e  c a s e  when t h e  d i m e n s i o n  n o f  t h e  f u n c t i o n a l - d i f f e r e n t i a l  s y s t e m  Lx = f does  no t  
c o i n c i d e  w i t h  t h e  d i m e n s i o n  m of  t h e  v e c t o r  f u n c t i o n a l  ~, a r e  N o e t h e r i a n .  For  such  p rob lems  
S c h m i d t ' s  c o n s t r u c t i o n  [3 J ,  which g i v e s  t h e  p o s s i b i l i t y  t o  c o n s t r u c t  t h e  g e n e r a i i z e d  i n v e r s e  
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operator in the case of a Fredholm (m = n) boundary value problem, cannot be applied. We 
present two methods for the construction of the generalized inverse operator A- of a Noether- 
ian operator A in a Banach space. The first of them assumes the use of the properties of the 
operator L and is based on the construction of the generalized Green operator [2, 4] of the 
initial semi-homogeneous boundary value problem, while the second one is based on the application 
of certain results of the theory of operators in Banach spaces, enabling us to obtain an anal- 
ogue of Schmidt's construction for Noetherian operators. 

i. In the notations of [i, 5] we consider the boundary value problem 

Lx=f, (I) 

Ix = c~, ( 2 )  

where L: D~ ~ L~ is a bounded linear operator for which the Cauchy problem Lx = f, x(a) = c 

is uniquely solvable for any [~L~ and cERn and its solution has the form 

b 

x (tt = X ( O c +  .f C( t ,  "~) f ('0 d'~; ( 3 )  
r 

X(t) is the n • n fundamental matrix of the operator L: LX = 0, X(a) = En, C(t, ~) is the 
n x n Cauchy matrix, which everywhere in the sequel will be cbnsidered defined in the square 
[a, b] • [a, b], setting C(t, T) -= 0 for a~t<tT~b; l:D'/,-+]~ m is a bounded linear vector- 
valued functional; L~ is the space of n-dimensional vector-valued functions, having summable 
p-th powers, 1 < p < +~, on the finite segment [a, b]; D~ is the space of n-dimensional vec- 

n 
tor-valued functions, absolutely continuous on [a, b] and such that x ( Lp. 

Such problems are, for example, the boundary value problems for ordinary differential 
equations [2], equations with delay [6], and problems with impulse actions [7]. 

Let Q = s be an m x n constant matrix; let PQ (PQ*) be the n • n (m • m) orthoprojec- 
tion, projecting R n (R m) onto the null-space N(Q) IN(Q*)] of the matrix Q (Q*); let PQr be 
the n • r matrix (r = n - rank Q) consisting of r linearly independent columns of the matrix 
PQ; let PQ~ be the d • m matrix (d = m - rankQ) consisting of d linearly independent rows of 

the matrix PQ*;let Q+ be the unique Moore-Penrose generalized inverse n x m matrix, for the 
construction of which there exist detailed algorithms [8, 9]. 

THEOREM i. If rankQ = n I < n, then the boundary value problem (i), (2) is solvable for 

" E R" those and only those fCi v and ~ which satisfy the condition 

I: 

p ;, ,(~ - ~., c~ . ,  ; ~ f / ~ ! ~ ;  I = 0, (~)  
d 

and, moreover, we have an r = n - nl-parameter family of solutions 

x (0 = Xr (0 c~ + X (t) Q+~ "- (Of)U), (5)  

where  X r ( t )  = X( t )PQr  i s  t h e  n • r f u n d a m e n t a l  m a t r i x  o f  t h e  boundary  v a l u e  p rob lem ( 1 ) ,  (2 )  

and G i s  t h e  g e n e r a l i z e d  Green o p e r a t o r  o f  t h e  semi -homogeneous  boundary  v a l u e  p rob lem ( 1 ) ,  
(2), defined in the following manner: 

b b 

(cf) (t) = .!' c (t, 0 [ (0  a-~ - x (0 Q+ z ! c (., T) f m ~,"~. ( 6 ) 
~7 C 

Proof.  The s o l u t i o n  (3) of Eq. (1) is  a s o l u t i o n  of the boundary value problem (1) ,  (2) 
if and only if the vector c'C R" satisfies the equation 

b 

Oc = c r  ! t' C ~ . ,  T)I(x)dT. ( 7 )  

For the solvability of the algebraic system (7) and, consequently, also of the boundary value 
problem (I), (2), it is necessary and sufficient [8] that the right-hand side should belong 
to the orthogonal complement of the subspace N(Q*), i.e., the condition (4) should hold. In 
this case the algebraic system (7) has the solution 

b 

= PQ,.cr + Q+(o~ - f t" c ( . ,  ~-)i/~-) d-~). ( 8 )  
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Introducing (8) into (3), we obtain the general solution (5) of the boundary value problem 

( 1 ) ,  ( 2 ) .  

The c o n s t r u c t e d  g e n e r a l i z e d  Green o p e r a t o r  (6)  s o l v e s  t h e  semi -homogeneous  boundary  
v a l u e  problem 

Ax = I Lx f ,,1=[ol 
and,  as  one can e a s i l y  v e r i f y  by a s t r a i g h t f o r w a r d  c o m p u t a t i o n ,  s a t i s f i e s  t he  f o l l o w i n g  
r e l a t i o n s  : 

b 

A~, = ~ol .II*' PQ,I .( c (.. ~),d~l, 
o 

lim G*-- ]im G * =  ~ l*d'r, 
r 

t, 

O*l . . . .  : i' XPQ,d,.  

(9) 

(1o) 

(z l )  

Making use of the properties (9)-(11) of the generalized Green operator of the boundary 
value problem (i), (2), one can show that the operator 

A-* = [O*, XQ+*] (12)  

i s  a g e n e r a l i z e d  i n v e r s e  [2] o f  t he  N o e t h e r i a n  o p e r a t o r  A and s a t i s f i e s  i t s  d e f i n i n g  [10,  t l ]  
p r o p e r t i e s :  

A - A A -  = A-;  AA-A = A. (13)  

As shown in [ 1 0 ] ,  t he  s econd  p r o p e r t y  i s  a c o n s e q u e n c e  o f  t h e  f i r s t  one.  We v e r i f y  t h e  f i r s t  
p r o p e r t y .  S ince  LX = 0, gX = Q, making use  o f  ( 9 ) - ( 1 1 ) ,  we have 

AA-* = L [O*, XQ+*] = = b . 
l IG* IXQ+* ] PQ,I,I C (., "r)*d'r QQ+. 

Since  Q+Po" = (Q*Q -J- Po) -~ Q*PQ* = O, Q+QQ+ = Q~ [ 9 ] ,  we have 

I i  ~ i A - A A - * = [ G ' X Q + ]  PQ.I C(. ,T)*dT QQ+. = [ G I " * i X Q ' P Q ' l J  C('''O*d'~' XQ+QQ+* 
r 

Thus, the operator A- is a generalized inverse of the Noetherian operator A. Making use of 
the form of A and A-, it is easy to verify that 

PA, = l -- AA-,  

n m , n x R m where P.~.:L D • R -~kerA is a projection, projecting the space Lp onto the kernel of 
the operator A*. Indeed, since I m - QQ+ = PQ, [gJ, we have 

F 1~* 0 1 

J 0 lm* - - P Q ~  C(., '~)*dz QQ+* = 

[o o ] [  o 
_ _  b b 

- - PQ'f f c ( ' ,  T t ,d~ ( & , - -  QQ+) ,  = - -  PQ,l I C ( . ,  ~ t * ~  Po'*  " 
(1 r 

n x R m Thus, the action of the projection PA* on the element y = col (f, a) of the space Lp is 
e q u i v a i e n t  to  t he  a c t i o n  o f  t h e  o p e r a t o r  

b 

which coincides with the solvability criterion (4) of the Noetherian boundary value problem 
(i), (2). 

1249 



THEOREM 2. The operator equation Ax = y is solvable for those and only those y { L~ • R'" 
which satisfy the condition PA*Y = 0 and, moreover, it has an r-parameter family of solutions 
of the form 

x (t) = X.  (t) c r +. (A-y) (t), r = dim ker A, 

where A- is the generalized inverse operator defined by formula (12). 

2. We indicate another approach to the construction of the generalized inverse operator 
A- of a Noetherian operator A:X + Y, acting from a Banach space X into a Banach space Y. 

Let A be a bounded linear Noetherian (dim kerA= r, dimker A* = d) operator, let A* be 
the adjoint operator of A, A*:Y* + X*, defined according to [12] 

(A*g) (x) : -  g (.\x), xqX, g ~ Y * ,  

wherg X ~ and Y* a r e  t h e  s p a c e s  c o n j u g a t e  t o  t h e  s p a c e s  X and Y, r e s p e c t i v e l y .  As b e f o r e ,  by 
N(A), N(k ~) and R(A), R(A ~) we s h a l l  d e n o t e  t h e  n u l l - s p a c e s  ( k e r n e l s )  and t h e  r a n g e s  o f  t he  
operators A, A*, respectively. 

Let {fi}, i = 1 ..... r, be a basis of kerA and let {%}, 
kerA*. As a consequence of the Hahn-Banach theorem [13], 
functionals yj{X* such that 

~ I ' ~ ( / : ) :  5j , ,  / , / : =  I . . . . .  r, 

and a l s o  l i n e a r l y  i n d e p e n d e n t  e l e m e n t s  % , ~ ) "  s u c h  t h a t  

qs(gj,):.bsi, ,  s,~ =: 1, . . . ,d.  

F o l l o y i n g  [3,  14] ,  we d e f i n e  t h e  p r o j e c t i o n s  

, P, , :X.--- ,N(A),  P ~ = P , , ,  P a . : Y - + N ( A * ) ,  

a c c o r d i n g  t o  t h e  f o r m u l a s  

s = l,...,d, be a basis of 
there exist linearly independent 

o 

Ph. = Pa. 

" <7 
P,~x = V "~,~ (x)  7~, P ~ . t / =  % (!/) i ,. 

i - - I  ~-, I 

Let p = min(r, d). Then, following [15], we introduce the operators 

f~j .=.  <~i(.V)~l:i, >.x. \._~ ] NI (.\") _Q ,'V ( \*), if r ~ d ,  
i~ l  [ N ( . \ * ) ,  if r ~ -d :  

::{:: P ,'V 
>-~*J] :: \~ q's(.ff)/s, PA*:)'~ [ ( ' \ ) '  if r~d, 

,=I-- 1"\7 1 ( . \ ) ~ -  N ( . \ h - - -  if r~d .  

For tlhe construction of the generalized inverse operator we prove the following lemmas. 

I:LKNNA 1. The o p e r a t o r s  PA, PA ~, PA, PA* have  t h e  f o l l o w i n g  p r o p e r t i e s :  

4 )  P.,'>., = f t- ,P'  == > ' ,  

2) PA.~,. = >, .P~.  >,, , ,  

3 ) PaP.v!/ = ~"  q ~ (!tl ~1~, 
S = ]  

i 

D 

) P.,*P~* = V ~', (-") L. 

We p r o v e ,  f o r  example ,  p r o p e r t y  1) .  

(~i)~bs~---- ~ y~(X)~J~ =>~x, since %(~i) = 
~ 0, 
i=l 

P 

Yi ([J) ~bz = E Yi (X) ~)i = PAX since ?i ([J) = I 6ij' 
i=l [ O, 

fled in a similar manner. 

We h a v e  P v f i . \ x  == V (] ~ ( \7  T~ (x) q~'i q;,, == Yi (x) % >( 
s =l  i = ]  ~ = ]  i = 1  

i f  [, S-~ l . . . . .  P' >,~P.,x-~. __~V%'i(ZyJ(X) fJ)~h ----~ . ._~ ~'j(x) X 
if S~ p, i=l i=l ~=I ,=! 

if [ , j  = I . . . .  p, The remaining properties are veri- 
if /> P. 
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LEMMA 2 .  The operator ~ = A + PA has a bounded inverse 

- _ ,  = [(A-}- P ~ j T - ' - -  l e f t ,  i f  r ~ d ,  

"\:': I (A + ".P O-/"t -- right, if r./~ d. 

Proof. Let r~j From Theorems 2.1 and 5.1 from [I0] there follows that for the exis- 
tenc_e of a left inverse operator A~ I of the operator A it is necessary and sufficient that a) 
kerA= {0}; b) dimkerA* < =. 

We show that ker% = {0}. We assume that there exists x 0 ~ 0, x06X such that (A + PA) x 
P 

x 0 = 0, from where :\x0 .... Pyi(x0)~'~. Applying to both sides of the last equality the func- 

tional %, s = l,...,d, we obtain 

0 :-: % ( : \ .~ , t  . . . .  <"  : ' ,  (.~,,i ~I~ ( % )  . . . . .  ,,,~ (x,,). 
i I 

T h u s ,  l ' ~ ( x , , ) ~ O ,  .~= 1 . . . . .  p : - : r .  S i n c e  t h e  s y s t e m  o f  f u n c t i o n a l s  ~ s ,  s = 1 . . . .  , r ,  i s  l i n e a r l y  
i n d e p e n d e n t ,  by v i r t u e  o f  a c o n s e q u e n c e  o f  t h e  H a h n - B a n a c h  t h e o r e m  [ 1 3 ] ,  we h a v e  x 0 = 0o 
The o b t a i n e d  c o n t r a d i c t i o n  p r o v e s  t h a t  k e r ~  = {0} .  

We show t h a t  d i m k e r % *  = d - r < ~.  F o r  t h i s  we f i n d  P-A" I f  x ~ X ,  g ~ ] ,  t h e n  

:< " " ( i :  
i = 1  ( : 1  i : : I  i ~ l  

from where >i~ : :  r ff (@~i) I":. 
l' = ,  | 

We f i n d  t h e  g e n e r a l  f o r m  o f  t h e  f u n c t i o n a l  g ~ Y *  , s a t i s f y i n g  t h e  e q u a t i o n  

from where 
( A + P . O  ~ 0, 

V 
i I 

A p p l y i n g  ( 1 4 )  t o  t h e  e l e m e n t  f k ,  we o b t a i n  

%1 :'~. ( 1 4 )  

0 = (.Yg}/:: = ,<, (.\L:I = -- <' .<, I%) ;'~ (/:, ~ .... g (qh), ~ ' = [  . . . .  r. 

Consequently, (14) has the form A*g 0 From here g \" = �9 = cjqj. where q~ are basis vectors of 
the kernel N(A*). i='~ 

But we have established that g(~k) = 0, k = 1 .... ,p = r; therefore, 

d p d 

0 : g (~p,~ = V cTl, j ( % )  =- V c:q.: ( % )  -" V c'jq. i ( ~ ) .  

6jl , , if 
From t h e  f a c t  t h a t  q~t~b:t =-: I 0, i f  

and  c j  a r e  a r b i t r a r y  n u m b e r s  f o r  j 

g - - - - V  

] , k - - = L  . . . . .  p, 
i>F. there follows that cj = 0 for j = 1 ..... p = r 

= r + 1 ..... d and, therefore, 

c ' i q , ~ . V ( ~ * ) ,  dim kcr A .... d - - r < o o .  

Thus, we have proved for the case r~d the existence of the left inverse operator ~[i of the 
operator A. 

Since the bounded linear operator A is Noetherian and, consequently [15], normally solv- 
able, it follows that R(A) is closed in Y. The closedness and, therefore, also the bounded- 
hess of the operator (A + PA)[ I follows from the closedness of R(A) and the finiterdimension- 
ality of NI(A*) = R(pA). 

In order to prove the existenc~ of the right inverse operator ~-~ it is necessary and 
sufficient [I0] to show that a) kerA*= {0}; b) dimker~ < ~. The proof is similar to that 
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of the case r~-~d. If r d = p, then --,=~-i = ,\a: and the formulated lemma turns into Schmidt~s 

has the following properties 

P,,-XT,~ = >~ . ,  

AX~,lr --~ Ir  -- P ~., 

A-s = Ix -- PA. 

known lemma [3, 14]. 

-LEMMA 3. The o p e r a t o r  ,\L,~ 

( 1 5 )  

(16) 

(17) 

( 1 8 )  

Since PA,A = 0 and ~A* • We shall carry out the proof of the lemma for the case r~d. 

PA ~- PA, applying on the right the operator A + PA to both sides of (15), we obtain the iden- 
tity 

!5 __ __ 

!:: Pa = >A. (A + fia) = >a.A + P,, .Pa = Pa . ,  

p r o v i n g  p r o p e r t y  ( 1 5 ) .  S i n c e ,  by v i r t u e  o f  Lemma 1, PA,PA = PA and PA,A = 0, a p p l y i n g  t o  
b o t h  s i d e s  o f  (16)  t h e  o p e r a t o r  A + PA on t h e  r i g h t ,  we o b t a i n  an i d e n t i t y  t h a t  p r o v e s  p r o p -  
e r t y  (16)"  

: A = ( I v - - P a . ) ( A + f i a ) = A ? P . x - - P A . A - - P , . > , = , I §  = A .  

S i n c e  P~, = PA* and APA, = 0, a p p l y i n g  on t he  l e f t  t he  o p e r a t o r  k t o  bo th  s i d e s  of  (17)  and 
making use  o f  ( 1 6 ) ,  we o b t a i n  t he  i d e n t i t y  

0 = (Iv - -  Pa.)Pa : =: AXT)Pv = ,\/Sa, = 0, 

whi:ch proves property (17). Applying the operator ~i on the right to both sides of (18) 
and making use of the properties (15)-(17), we obtain the identity 

----I ----I - - - - 1  ----I ----I ----I ----I 
-- = Az,~ P ,Al ,~ ,  Al,~lv A,~PA. A.~AAI.~ = (Ix - -P.~)  = lxA~,~ - -  

which p r o v e s  p r o p e r t y  ( 1 8 ) .  

For  t h e  c a s e  r ~ d  the  p r o o f  o f  the  lemma i s  c a r r i e d  ou t  in a s i m i l a r  manner.  

The above given lemmas enable us to prove the following theorem [16]. 

THEOREM 3. The operator 

A -  ---- AT) - -  >,~' 19 ) 

i s  a bounded g e n e r a l i z e d  i n v e r s e  o f  t he  bounded l i n e a r  N o e t h e r i a n  o p e r a t o r  A. 

For the proof of the theorem we verify that A- satisfies the properties (13). For this, 
first we show that 

Indeed, 

A A -  = l r - -P . ,~ , ,  A - A  = I x - - P A .  

since 

A A -  = A (Sj.~ - -  P , . )  = A X T '  - -  , ~ , .  = I , . -  p . , . ,  

p 

a ( > , @  - -  A ( v  q~, (::) L,) =, (~  % (y) a L  = 0; 
s ~ l  S = l  

A-A ( l . ,  - -  > ,~ . )  A == , % , , A  - -  > A , A  = lx - -  Pa, 

P P 

since ~),.(Ax)= V~IAx)f,~ %.i(A*qs)(x)]~=O" Now we verify property (13). We have 

AA-A= A(Ia--PA)=A--AP^=A, 

A-AA- = (Ix -- P O iX- = A---PAA- = A-, 

since PAA-= PAA[~--P~PA*= Pa.--fia.=O by virtue of Lemmas i and 3. Thus, the theorem is 
proved. 

3. The method, presented in Sec. i, of the construction of the generalized inverse 
operator A- of the boundary value problem (i), (2) with the aid of the generalized Green 
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operator is valid also in the case when the operator L is bounded linear Noetherian [without 
the assumption of the solvability for an arbitrary 16 L~ of the Cauchy problem for (i)]~ 

Indeed, let dimkerL = s and let PL,:L9 + kerL* be the projection whose construction 
is described iN Sec. 2. Then Eq. (i) is solvable for those and only those /EL~ for which 

PL,I = O, ( 2 0 )  

and we have an s-parameter family of solutions 

x (t) = X ,  (t) c~ + (L- f )  (l), e~ E R ' ,  

w h e r e  X s ( t ' )  i s  an  n • s m a t r i x ,  w h o s e  c o l u m n s  f o r m  a b a s i s  o f  k e r  L,  w h i l e  L-  i s  t h e  g e n e r -  

a l i z e d  inverse operator (19). 
; n 

The boundary value problem (1), (2) with a Noetherian operator L:D + Lp is solvable if 
and only if [Ei~ and eER m satisfy the conditions (20) and 

P0~, {~ - -  ! (L-f)} = 0 (d 1 = m - -  rank  QI) 

a n d ,  m o r e o v e r ,  i t  h a s  an  r l - p a r a m e t e r  f a m i l y  o f  s o l u t i o n s  ( r  1 = n - r a n k Q 1 )  

x(O = X~,(tjc~, + X,(t)Qi~~ + (G,f)(t), 

where Xrz(t) = Xs(t)PQr I is the n • r I fundamental matrix of the boundary value problem (i), 

(2), Q~ is an s x m constant matrix, the generalized inverse of the m • s matrix Ql = s 
while G l is the generalized Green operator of the semihomogeneous boundary value problem 
(i), (2), having the representation 

~G~f~ (o = ~L-f)it) - x ,  (0 Q ~  (L-fi. 

Moreover, the generalized inverse operator k-, resolving the boundary value problem (i), (2) 
with a Noetherian operator L, has the form 

A-* =-[O~*, X,Q]~*. 
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COMPARISON METHOD AND PERIODIC SOLUTIONS OF NONLINEAR SYSTEMS 

E. V. Boskresenskii UDC 517.91 

A comparison method is used to obtain conditions for the existence of periodic so- 
lutions of nonlinear differential equations. 

i. Introduction and Statement of the Problem. Results of the present paper were ob- 
tained by a method close to a comparison method developed by the author in several papers, 
the main ideas of which are contained in [i, 2]. The comparison equation here is a differ- 
ential equation having no T-periodic solutions, with the exception of an equilibrium state, 
which is the coordinate origin. Proximity of the right-hand members of the equations being 
compared gives rise to the existence of solutions of the same type. In particular, by this 
method numerous results were obtained relating to asymptotic properties of solutions (sta- 
bility, boundedness, existence of O-curves, etc.), the authors in question being H. Poincar6 
and A. M. Lyapunov. This type of approach is essentially also the main approach in the 
analysis of oscillations in nonlinear systems. In the classical literature an equation of 
first approximation is used as the comparison equation. An intrinsic approach of this kind 
generates in some cases insurmountable difficulties, whereas the substitution of a compari- 
son equation can strongly simplify the problem. This case is considered in the present 
paper. 

Consider the equations 

and 

dx/dt :- F (t, x) - ;  f (t, x) ( i )  

where f, F ~ C(/~ :-" [~", 14"): 

+~ and  x, !tER'*. T > O :  ]:,EC ("''''~ (/," ::< P", P~">, / ' ) , 0 ,  ::,' .~-0, F.(:, 0 ) ~ 0 .  L e t  us  c l a r i f y  u n d e r  wha t  
conditions Eq. (i), in the ball S,. : [.v~R":[l.vli-~.-rl , has a T-periodic solution if!iF(t,.,:)-- 

t I Sj I 
Y,,(t, x)[l~.~6(t)<6 for --oo<l<@ c~ and .v~KSr, l','~, ..... i x : - ~ - . v <  , . ]x '~  1. 

and  

@ / d r  ~ Fo (~, y), ( 2 )  

Y ( / -  T,.v):  F(hx) ,  F.)(I-:-T,!/)-=F,)(LIj], j( t- ' -T,x)::-  /~;, vi f o r - o o  < t < 

In the sequel, we solve this problem under the assumption that 

II F (t, .v,) -- I (: . .v~)I! ~ ~,, II .v, - -  ~ 

).i F,, (l, x , l  - I , ,  II . .v. . i  ii ~< A~ ii .v, .v~ 

for--oo -<<t-<-:  o<>, x), .v=,(A5,, /,,, i\>7>0. 

2. Existence of Periodic Solutions. We introduce some notation. Let C T be the Banach 
space of all T-periodic n-dimensional vector-valued functions, continuous on the set (--~, 
+ ~ ) ,  w i t h  s u p - n o r m  I1.1f~; l e t  CT. ' == /u~(7./ '!It/It .<<r~; C.,  = []'(.,ll(.))(:C'r:UCCT.r]. r ,-  suplE/(l, n(0)[!. 

w h e r e  O . ~ I ~ T ,  tt6Cr.,; l e t  y ( t : t o ,  Yo) be t h e  s o l u t i o n  o f  Eq. ( 2 ) ,  y ( t  o, t o , Yo) = Yo. 

l l@(t:s,x,))  
LEMMA 1. L e t  mLZ >. 1, p ~ O ,  ~)~x; ~ K e  - a u - ' ) ,  A ' ~  1, ~ . 0 ,  O ~ , ~ , ~ I ' ~ T ,  Xo~S ,, and 

!I ~o,, (z, ?,,) - fo,, u,  7 , ) t ]  ~ z ll .-<) - -  ~:~ II, 
w h e r e  - - o o ~ t < 4 -  oc, .\-., .v~A'Sr,  l>O.  

Mord University, Saransk. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 
43, No. i0, pp. 1350-1355, October, 1991. Original article submitted October 15, 1990. 

1254 0041-5995/91/4310-1254512.50 �9 1992 Plenum Publishing Corporation 


