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W E A K L Y  N O N L I N E A R  B O U N D A R Y - V A L U E  P R O B L E M S  

F O R  O P E R A T O R  E Q U A T I O N S  W I T H  P U L S E  I N F L U E N C E  

Ao M. Samoilenko, A. A. Boichuk, and V.F. Zhuravlev UDC 517.9 

We consider the problem of finding conditions of solvability and algorithms for construction of solutions 
of weakly nonlinear boundary-value problems for operator equations (with the Noetherian linear part) 
with pulse influence at fixed times. The method of investigation is based on passing by methods of the 
Lyapunov-Schmidt type from a pulse boundary-value problem to an equivalent operator system that 
can be solved by iteration procedures based on the fixed-point principle. 

The study of the qualitative theory of differential systems with pulse influence started in [1, 2] has been further 
developed and extended in a great number of papers. Thus, an approach to the study of pulse periodic boundary- 
value problems for ordinary differential systems proposed in [1] was successfully developed and applied in the case 
of weakly nonlinear pulse boundary-value problems (with Noetherian linear part) for ordinary differential systems 
[3] and for linear boundary-value problems for differential systems with concentrated lag [4]. From the point of 
view of operator theory, one of the essential peculiarities of these problems is the everywhere solvability [5] of  the 
Cauchy problem for initial differential systems. However, there exists a fairly wide class of  boundary-value 
problems for functional differential equations [6] for which the initial operator equation is not everywhere solvable. 
Precisely this class of problems is considered in the present paper; our purpose is to obtain criteria for the solvability 
and formulas for the presentation of solutions of linear boundary-value problems for Noetherian operator equations 
with pulse influence at fixed times. We find conditions of solvability for weakly nonlinear (with Noetherian linear 
part) pulse boundary-value problems and construct a convergent iterative algorithm for finding solutions. For this 
purpose, we use criteria of solvability and formulas obtained in [3] for constructing solutions of linear Noetherian 
operator equations in Banach and Hilbert spaces. By methods of the Lyapunov-Schmidt type, we pass from a pulse 
boundary-value problem to an operator system and then apply the convergent iterative procedures based on the 

fixed-point principle [7, 8]. 

Denote an interval - ~ < a < t < b < + ~  by l[o, bl, an interval 0 < e < ~  0 by l[0,eol, a space of n- 

dimensional vectors x = col [Xl, Xz . . . . .  xn] with the norm Ilxll = max l<_i<_nlxil by R n, a space of  (n • n)- 

dimensional matrices with a norm consistent with a norm in R" by R ~• and the Heaviside function by Zx(t), 

i.e., )~z(t) = 0 for t < "~ and Z~(t) = 1 for t > "~. By analogy with [6, p. 123], we introduce the following spaces of 

functions x:  [a, b] ~ R~: L n is a space of summable functions with norm 

b 

II x lit., = j" II x(s)II ds; 
a 

D n is a space of absolutely continuous functions with norm [[xl[o.  =l lx(a) l [  + 11 .~ ILL.; C is a space of 

continuous functions with norm II x IIc = maxs~ [ ,~b] II x(s)II, n V is a space of functions of bounded variation with 

norm II x Ilsv = II x(a) II + vara b x; sP  is a subspace of the space B V consisting of functions of jumps: 

i=1 
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with a norm induced by  the norm of B V; and DnS is a subspace of the space B V consisting of functions that can 
be represented as the sum of  an absolutely continuous function and a function of jumps: 

DnS  = { Z E  B V I 3 x ~  D n, 3 y ~  SP:  Z = x + y } ,  IlzllDos = Ilxllon +llyllsp. 

Statement of the Problem 

Consider a weakly  nonlinear operator equation 

( L z ) ( t )  = f ( t )  + EZ(z, t, ~), (1) 

where L : D n ---> L n is a linear bounded Noetherian operator [5, p. 38] (ind L = dim ker L -  dim ker L* = s - k),  L* 

is an operator adjoint to the operator L, Z : D n x  l[c~b] • l[0,E0] ~ Ln is a nonlinear operator,  and e is a small  

nonnegafive parameter.  
Let x l, x2 . . . . .  Xp be a fixed strictly ordered system of points from the interval [a, b ]. Assume that solutions 

of  Eq. (1) at times xi, i = 1, 2 . . . . .  p, have jumps defined by the equalities 

Z~Z [t=X i - - S i z ( ' c  i - ,  E) = a i + EJ i ( z (T .  i - ,  E), E),  (2) 

where AZ[t=xi=z(T,i+,E)--z(T,i  - ,  E), S i E R nxn are such that d e t ( E + S i ) ~ e O ,  

nonlinear vector functional, and a i E R ~. 

Assume that solutions of  system (1), (2) satisfy the conditions 

J i :  Dn• eo] - -~Rn is a 

l z ( . ,  E) : C~ + ~J(z ( ' ,  ~), ~), (3) 

where l : D n • l[0,eo] ---> R m and J : /:P • l[0,eo] ---> R m are m-dimensional linear and nonlinear bounded vector 

functionals, respectively. 

Linear Boundary-Value Problems 

Before studying the weakly  nonlinear pulse boundary-value problem (1 ) - (3 ) ,  we consider  the p rob lem of  
finding a criterion of  solvabili ty and formulas for the presentation of solutions of  the generating linear boundary-  

value problem obtained f rom (1 ) - (3 )  if e = 0, namely, 

( L z ) ( t )  = f ( t ) ,  t ~  [a ,b] ,  (4) 

A z l t = x i - S i z ( Z i - ,  O) = a i, (5) 

l z ( . ,O)  = o~. (6) 

A function z ( t )  ~ DnS  satisfying Eq. (4) for almost all t ~ [a, b] and conditions (5) and (6) is called a solution of  
the linear pulse boundary-value problem (4) - (6) .  

It is known [3, p. 53] that the linear Noetherian operator equation (4) is solvable for  those and only those 

f ( t )  ~ L n which satisfy the condition ( P y f ) ( t ) =  0, and its solution has the form 
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z(t, Cs) = X(t)c  s +(L - f ) ( t ) ,  (7) 

where X(t)  is an (n • s)-dimensional matrix formed by basis vectors of a null space N(L )  of the operator L; 

Py: L n--+ Y is a projector on a subspace Y ~ L n isomorphic to a null space N(L*)  of the operator L*; and L-  

is a generalized inverse operator of the Noetherian operator L. 
For the pulse Noetherian operator equation (4), (5), the following statement is true: 

Theorem 1, The Noetherian operator equation with pulse influence (4), (5) is solvable for any a i ~ R n, 

i = 1, 2 . . . . .  p, and for those and only those f ( t )  ~ L n which satisfy the condition 

(Py f ) ( t )  = O. (8) 

The equation considered has a general solution of the form 

= (t),  c ~ R s, (9) 
ai 

where 

is an 

A = col [L, A - Si]. 

k k-1 
g(t) = X(t) E H S v e / - l '  t E  ]Tk_l,q~kl , 

i=1 v= i  

( n x s )-dimensional matrix formed by basis vectors of a null space of the pulse Noetherian operator 

k-1 
(z;:)(t) = x(t) H 

v=i+1 

k-I k 
ffi(t) = X(t) H SvX+(xi ), Po = Es, H Sv = Es, 

v = i + l  v=k+ l  

Si = X+('~i)(E+Si)X(T,i); (Li-f)('~i) = X+(xi)Si(L-f)(T'i), 

where X + (zi) is an ( s • n)-dimensional unique pseudoinverse matrix of an ( n • s)-dimensional constant 

matrix X('ci); Pi" Rs --->N( X ('ci)) is an ( s • s )-dimensional orthoprojector matrix of  the Euclidean space R s 

on a null space N ( X ( z i )  ) of  the matrix X(zi) .  

Proof  Assume that condition (8) of solvability of Noetherian operator equation (4) holds. Then a general 

solution of this equation on the intervals [a, "c l ] and ]'c l, "~2] has the form 

is a generalized inverse operator of the operator of pulse equation (4), (5). Here, 

i.- (t) __- (L-:)(t) + Z (LT:)(t) + Z 
i=I i=I 
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Zl(t )  = X ( t ) c + ( L - f ) ( t ) ,  t e  [a,'l;1], 

z2(t)  = X ( t ) c 2 + ( L - f ) ( t  ), t~  ]~l, Z2]. 

By pulse conditions (5), we obtain 

X('cj + ) c2+  ( L - f ) ( z  1 +) = ( E + S 1 ) { X ( z l - ) c + ( L - f ) ( ' c  1 - )}  + a 1 . 

For simplicity, without loss of generality, we assume everywhere below that 

Denote by Pl an 

305 

(10) 

(11) 

X('r. i - )  = X(T. i +), ( L - f ) ( x . i - )  = ( L - f ) ( z  i +). 

(s x s)-dimensional orthoprojector matrix projecting the Euclidean space R s on the null 

space N ( X ( ~ I )  ) of a constant (s x n)-dimensional matrix X ( z l ) ,  PI : Rs - -+N(x ( ' c l ) ) .  Let PI (*) denote an 

(n x n)-dimensional orthoprojector matrix projecting the Euclidean space R n on the null space N ( X * ( z l )  ) of an 

(n x s)-dimensional matrix X*(Zl) adjoint to the matrix X(x l ) ,  PI(*) : Rn---~ N ( X * ( ~  1))- 

It is known that system (11) is solvable with respect to c ~ R s if and only if 

Pt(*){(E + S l )X( ' c l )C  + S l ( L - f ) ( ' ~ t ) +  a l }  = O. (12) 

Since the (n x s)-dimensional matrix X( t )  is formed by a complete system of s linearly independent basis vectors 

{~}s= 1, we have that the constant matrix X('~I) has the complete rank [ rankX(Zl)=  n, n < s]. Therefore, 

Pl (*) = 0 and, consequently, condition (12) always holds. In addition, system (11) has an ( r  0 = s -  n)-parametric 
family of solutions 

C 2 = PIC+X+(T .  1 ) ( E + S I ) X ( Z l ) C + X + ( ' C l ) S I ( L - f ) ( ' ~ I ) + X + ( ' ~ I ) a l ,  

where X+('cl) is a unique (s x n)-dimensional pseudoinverse matrix of the matrix X('I;I), which can be con- 
structed by the relation [3, p. 91] 

X + ( , [ I )  = X * ( ' C l ) [ X ( ' [ 1 ) X * ( ' [ l ) ]  - l  

with regard for the facts that PN(X'(,~)) = 0 and P lc ~ N(X( ' c l )  ), where c ~ RS is an arbitrary s-dimensional 

vector. 
By substituting the obtained value of c 2 into relation (10), we arrive at the expression for the general solution 

z2 (t) of the pulse operator equation (4), (5) on the interval ]x l, x2] : 

z2(t ) = X ( t ) [ P  1 + X+('I:I)(E + S I ) X ( T , 1 ) ] c  + ( L - f ) ( t ) +  X ( t ) X + ( X l ) S I ( L - f ) ( ~ I )  + X( t )X+( 'c l )a l  . 

If we substitute the notation 

= X+( '~I ) (E+S1)X( 'Cl ) ,  (Ll f)( 'c  l) = X+( '~ I )S I (L- f ) ( '~1 )  

into this expression, we rewrite it in the form 
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Z2 (t) = X(t)[ SI + P1] c + ( L - f ) ( t )  + X(t) (Llf)(~:l) + X(t)X+('cl)a 1. 

On the interval ] q:2, "c 3 ], a solution of the Noetherian operator equation (4) has the form 

z3(t) = X ( t ) c 3 + ( L - f ) ( t ) ,  f~  ]'c2, q:3]. (13) 

In view of pulse conditions (5), we have 

X('c 2+)c 3 + (L-f)( '~ 2 +) = ( E + S 2 ) { X ( z 2 - ) [  ~ + P l ] c +  ( L - f ) ( z  2 - )  

+X('r,2-)(L-lf)('r,l)+X('c2-)X+('r, 1 ) a l } + a 2  . (14) 

As before, we denote by P2 an (s x s)-dimensional orthoprojector matrix, P2 : Rs -+N(X('c2)), and by P2 (*) 

an (n • n)-dimensional orthoprojector matrix, P2 (*) :Rn---> N(X*('C2) ). 

Since the constant (n • s)-dimensional matrix X(x2) has complete rank, we have that P2 (*) - 0. Moreover, 

Eq. (14) is always solvable with respect to c 3 ~ R s and has an (r 0 = s -n)-parametric family of solutions 

C 3 = P2 c +X+('c2)(E+S2)X( 'c2)[  ~ + PI]C+X+(z2)S2(L- f ) ( ' c2)  

+ X+ ('c2) (E + $2)X(7:2) (Llf)('Cl)+ X+(~2)(E + $2) X('c2) X+('C l)al  + X+('l;2)a2 . 

If we introduce the notation 

$2 = X+('c2)(E + S2)X(x2), (L2f)(z2) = X+('r,2)S2(L-f)('r,2) 

and substitute the obtained value of c 3 into Eq. (13), we arrive at the expression for the solution z3(t ) on the inter- 

val ]'c 2, "c3]: 

z3(t ) = X(g)[S2S  1 + S2P l + P 2 ] c + ( L - f ) ( t )  

+ X(/)[ 32 (L~f)('Cl) + (L2f)(z-2) ] + X(t)[ S2 X+ ('cl)a I + X + (x2)a2]. 

By applying a similar reasoning to the solution z4(t ) on the interval ]'c 3, "c4], we obtain 

z4(t) = X ( t ) [ S 3 S 2 S  1 + $3 S2P1 + S 3 P 2 + P 3 ] c + ( L - f ) ( t )  

+ X(t)[ $3 $2 (L~f)(~l) + $3 (L2f)(~2) + (L3f)(m3)] 

+ Xft)[ $3 32X+(~ I) a I + 33X+(z2)a2 + X+fq~3)a3] - 

By continuing this procedure, we obtain the statement of the theorem for the Noetherian operator equation with 
pulse influence. 

Remark 1. IfEq. (4) has a solution for any f ( t )  ~ L n, then condition (8) in Theorem 1 always holds. In this 



WEAKLY NONLINEAR BOUNDARY-VALUE PROBLEMS FOR OPERATOR EQUATIONS WITH PULSE INFLUENCE 307 

case, pulse operator equation (4), (5) is everywhere solvable, and this assertion holds, for example, for pulse 
ordinary differential.systems [3, p. 235] and for pulse systems with lag [4]. Moreover, in the case of ordinary 
differential systems, relation (9) is considerably simplified [1]. 

Further, let us discuss the problems of solvability and representation of a general solution of the generating 
boundary-value problem (4)-(6).  In order that solution (9) of pulse Noetherian operator equation (4), (5) satisfy 

boundary conditions (6), it is necessary and sufficient that lz(., c ) =  c~. The last relation yields the following 

algebraic system for finding a vector constant c ~ RS: 

oc __._ ,PL I 1) a, (1~) 

[here, Q = lX(.)  is an (m • s)-dimensional constant matrix]. Assume that rank Q = r 1. 

Equation (15) is solvable with respect to c ~ R s if and only if 

L oi 

and, in this case, it has an ( r = n - r I )-parameter family of solutions 

c =  PN(Q) Cr +Q+ot Q+l|L-Lfjl( F j _ (.). 
ai 

(16) 

Here, Q+ is a unique (s x m)-dimensional matrix pseudoinverse to Q, PN(Q) r is an (s x r)-dimensional matrix 

whose columns form a complete system of r linearly independent columns of the orthoprojector matrix 

PN(Q): Rs- '4N(Q);  and PN(Q.)a is a (dx  m)-dimensional matrix whose rows form a complete system of d 

linearly independent rows of the orthoprojector matrix PN(Q*) [3, p. 91]. 
By substituting solution (16) into (9), we obtain a general solution of the linear boundary-value problem for the 

pulse Noetherian operator equation of the form 

z ( t ,  Or) = X( t )eN(Q)rC r + X(t)Q+o~ + ( L - f ) ( t )  

k-I  p 

- X(t) Q + l ( L - f ) ( ' ) +  Z ( L T f )  ( t ) -  Z x( t )Q+l(LTf)  (') 
i=' l  i=1 

k-1 p 
+ Z ~ ( i ( t ) a i -  ZX( t )a+l~f i ( . )a i ,  tE ]'l:k_l,'~k]. 

i=1 i=1 

Thus, the'following theorem is tree: 

Theorem 2. The linear pulse boundary-value problem ( 4 ) - ( 6 ) f o r  the Noetherian operator equation is 

solvable for those and only those f ( t ) ~ L n, o~ ~ R m, and a i ~ R n which satisfy the conditions 

( P r f ) ( t )  = 0, (17) 
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A general solution of this system has the form 

(18) 

is an where Xr( t )=  X(t)PN(Q) ~ 

operator A 1 = col [A, l]; 

= (t) + X ( t ) Q + ~ ,  (19) 
ai 

( n • r)-dimensional matrix formed by the basis vectors of  null space of  the 

k-1 p 
= (L-f)(t)- X(t)Q+l(L-f)(.)+ Z(LTf)(t)- Z x(t)Q+l(17~f) (') 

i=1 i=I  

k- I  p 
+ Z X i ( t ) a i -  ZX( t )Q+lXi ( . )a i ,  tE  ]'t:k_l,'t:k] , (20) 

i=1 i= l  

is the generalized Green operator for a semihomogeneous ( t~ = O) pulse boundary-value problem corresponding 

to problem (4)-(6). 

Remark 2. If  linear operator equation (4) is everywhere solvable [5, p. 8] as occurs, for example, for pulse 
differential systems with or without lag, then condition (17) in Theorem 2 is absent, and this theorem reduces to the 
known theorems [3, p. 238; 4] for corresponding classes of systems. 

Weakly Nonlinear Boundary-Value Problems 

Consider a weakly nonlinear boundary-value problem 

(Lz ) ( t )  = f ( t ) +  eZ(z, t, ~), 

Azl t=xi-Siz(T, i - ,  ~) = a i + E J i ( z ( T , i - ,  E), E),  

lz(' ,  e) = ~ + eJ(z( ' ,  ~), ~). 

Assume that: 

(21) 

(al) L : D n --) L n is a linear bounded Noetherian operator; 

(a2) Z:  Dn• l[c~b] X l[0,eo] ~ Ln is a nonlinear operator continuous in z, Fr6chet continuously 

differentiable with respect to z in a neighborhood of a generating solution, continuous in e, and 

z ( o ,  t, o) = o, ~z(o ,  t, O)\bz  = 0 ;  

(a3) Ji : Dn X l[0,eo] ~ R m and J :  D n x l[0,e0l ~ Rm are nonlinear n- and m-dimensional functionals in 

z, respectively, which are Fr6chet continuously differentiable in a neighborhood of solutions of  a 
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generating boundary-value problem, continuous in a, and 

Ji(O, O) = O, aJiz(O, O)\az  = O; J(O, O) = O, OJz(O, O ) \ a z  = O; 

(a4) 1 : D n C  ~ R m is a linear bounded m-dimensional vector functional; 

(as) f ( t )  ~ L ~, ~ ~ R m, a i ~ R ~, i = 1, 2 . . . . .  p.  

The function z( t ,  ~) continuous in e, satisfying Eq. (1) for almost all t e [a, b],  and satisfying conditions 

(2), (3) is called a solution of the pulse boundary-value problem (21). In what follows, we denote by D n s  C a 

space of solutions of this sort. 
Consider the problem of finding existence conditions and the algorithm for construction of solutions z(t, e), 

which belong to the space D n s c  and, for e = 0, are transformed into one of the generating solutions Zo(t, Cr) 

(19) of the generating boundary-value problem (4)-(6). We denote the space of solutions of this sort by D n S C o  . 
Let us solve the stated problem in the following way: By using the generalized Green operator (20) constructed 

above, we reduce the initial boundary-value problem (21) to an equivalent operator system and then apply to this 
system the method of simple iterations under the assumption that the conditions of Theorem 1 hold, i.e., that 

f ( t ) E  L n, c~ ~ R m, a i ~ R n i =  1, 2 . . . . .  p, satisfy conditions (17), (18), and the generating boundary-value 

problem (4)-(6) has an r-parametric family of solutions (19). 

The following theorem establishes necessary conditions of the existence of solutions z( t ,  e)  ~ DnSCo  of the 
weakly nonlinear pulse boundary-value problem (21): 

Theorem 3. Let the weakly nonlinear boundary-value problem (21) have a solution z (  t, e)  ~ Dn s c which, 

for  ~ = O, reduces to one o f  generating solutions of  the linear pulse boundary-value problem ( 4 ) - ( 6 )  [this 

problem is generat ing f o r  (21)] with a constant Cr =Co ~ R r. Then the vector c o satisfies the sys tem o f  

equations 

( P v Z ( z o ( . ,  c,), ., o ) ) ( t )  = o, 

PN(Q,)d {J(zo(',Cr), 0)- lff C Ji(zo(T'i-,gr), O) .j Cr)'S' O) 7/(')l =J O. 

(22) 

Proof. Assume that the conditions of the theorem are satisfied. Hence, for all 0 < e < e 0 and for almost all 

t ~ [a, b], the identities 

( L z ) ( t )  - f ( t )  + eZ(z ,  t, ~), 

AZlt=x i-Siz('C i - ,E ) -  a i+EJi(z('~ i-,E),E), 

lz( . ,  ~) = ot + EJ(z(. ,  E), E) 

hold. It follows from Theorem 2 that the operators Z, J, and Ji  satisfy, for 0 -< e < e 0, conditions of the form 

(t7), (18), i.e., 

(PrZ(zo(., cO,.,  e))( t )  = o, 
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Now let condition (22) not hold. In this case, since z(t,  ~ ) -~  Zo(t, Co) as ~ -~ 0 and an operator Z(z ,  t, e)  is 

continuous in ~ and z in a neighborhood of e = 0 and z0(t, Co), one can find a sufficiently small e > 0 such that 
condition (22) is not satisfied. The contradiction obtained proves Theorem 3. 

By analogy with [3, p. 110; 7, p. 247], the system of equations (22) is called the equations for generating ampli- 

tudes. 

If  the system of equations (22) has a solution, then the vector c o defines that generating solution z 0 (t, c 0) to 

which the solution z(t ,  ~)~ DnSCo of the initial weakly nonlinear pulse boundary-value problem (if this solution 

exists) tends as e --4 0. However, if the system of equations (22) does not have solutions, then the boundary-value 

problem (21) does not have solutions in the space DnSCo . Since we perform all calculations in real form, we speak 
of real solutions of the system of equations for generating amplitudes. 

Let us find sufficient conditions for the existence of solutions of pulse boundary-value problem (21) in the case 
which is called a critical case of the first order. This case is characterized by the fact that the answer to the question 
on the existence of solutions for the initial problem is given after the analysis of a boundary-value problem used for 
the determination of the first approximation to the required solution. 

By changing variables 

z ( t , e )  = Zo(t, Co)+ X(t ,e  ), 

where a constant vector c o ~ R r satisfies the system of equations (22) for the generating amplitudes, in (21), we 
arrive at the following problem: It is necessary to find sufficient conditions for the existence and an algorithm for 

construction of the solution x(t,  ~) ~ D n S C  of a pulse boundary-value problem 

(Lx ) ( t )  = eZ(Zo(t ,  Co)+ x ( t , E ) , t , e  ), t~'C i, 

A x l t = x i ' S i x ( % i - )  = EJi(Zo(T,i--, CO) + X('Ci-, E), E), (23) 

lx  = ~J(Zo(. ,Co)+ X( ' ,E) ,~)  

vanishing for e =0 .  
Taking into account conditions (a2) and (a3) imposed on the nonlinearities in a neighborhood of the generating 

solution Zo(t, Co), let us select linear parts in x and terms of zero order in ~ from the nonlinear operators Z, Ji, 

and J. We obtain the following expansions in a neighborhood of x -" 0 and e = 0: 

Z(Zo +x, t, ~) = Zo(t ,  Co) + (Llx( . ,  E)) (t) + R(x, t, E), (24) 

where 

Zo(t ,  Co) = Z( zo ( t ,  Co), t, 0) :  D n x  I[c~b] --~ L n, 

L l : D ns C ---> L n is a linear bounded operator which is the Fr6chet derivative of the operator Z (z 0 (t, c 0) + x (t, e ), 

t, e) in z for z = Zo(t, Co), and 

R(O, t, O) = O, 3R(O, t, O)\Ox = O; 
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Ji(Zo + x, E) = Jio( '~i- ,  Co) + AilX(% i - ,  E)+ Ri(x( '~ i - ,  E), E), 

where 

and 

Jio(T.i- ,  Co) = Ji(Zo('r . i- ,  CO), 0) ,  

A i l  = A i l ( c o )  = 3J(z,O)\bzlz=zo(r i = 1  . . . . .  p ,  

Ri(O,O ) = O, ORi(O,O)\~x = 0; 

31t 

(25) 

where an unknown vector Cr=C(t, E) 
solution 

x(t ,e)  = ~r(t)Cr +X~)(t ,~),  

is determined from conditions of the form (17), (18) of the existence of the 

(PY{ ZO (', Co) + L I [ Xr(')cr + x(l)(  ", e)] + R (x, -, e)}) (t) = O, 

{ J(., Co) + l 1 [ Xr(')c r + x( 1 )(-, •)] + Ro(X(', e), ~) PN(Q') d 

LJio(T,i-, CO) + Ail[Xr('~i-)c r + x(l)('l;i - ,  E)] + Ri(x( 'r i - ,  E) 

An unknown vector function x( 1 )(t, e) is determined by the relation 

x( l ) ( t ,~ )  = EX(t)Q§ x( . ,~) ,~)+ ~ d Ji(zo(xi-,co)+ x('r'i-,~), E) (t). 

Taking into account expansions (24)-(26) and the fact that a vector constant c 0 E R r necessarily satisfies the 

equation for generating amplitudes (22), in order to find the solution x(t, ~)~ DnSC,  x(t, 0 ) =  0 of weakly 
nonlinear pulse boundary-value problem (23), we obtain an equivalent operator system 

J(zo + x, e) = Jo(', Co) + llx(',  e) + Ro(x(., ~), ~), (26) 

where Jo( ' ,  Co) = J(zo(' ,  Co), 0), l 1 : DnSC ~ R m is a linear bounded m-dimensional vector functional which is 

the Fr6chet derivative of a vector functional J(zo(', c*~ ) + x(., e), e) for z = zo(t, Co), and 

Ro(0 ,0)  = 0, 0 R 0 ( 0 , 0 ) \ ~ x  = 0. 

By considering the nonlinearities in boundary-value problem (23) as the inhomogeneities and applying 

Theorem 2, we obtain the following expression for its solution x(t, e): 
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(Boc(., e)) ( t )  = 

where 
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x(t, 13) = X--r(t)c (t, 13) + x( I )(t, 13), 

( l"y{ LlxC'l~( -, 13) + R(x(., 13), t, e)})(t) ] 

is a linear bounded matrix operator. 

x(1)(t, 13) = 

B 0 = ( V L3,(s)l~ 11 
PN(Q*)d /iXr(') -t- z|L-/  _ / t ( ' ) ~ I  

(. LAilXr(~i-)J) JJ 

The solvability of this system depends on the solvability of the second equation. 

Assume that B 0 is a Noetherian operator (ind B 0 = dim ker B 0-  dim ker B 0 = p - rl). Denote by PN(Bo ) and 

Py projectors on a null space N(Bo) and on a subspace Yl, respectively [this subspace is isomorphic to a null 

space N(B*o) of the operator B~]; let B o denote an operator generalized inverse to the Noetherian operator B 0 

[3, p. 531. 
The second equation of operator system (27) is solvable if and only if a condition of the form (8) holds: 

( Py{ Llx(1)( ., 13)+R(x(., 13), t, 13)})(*) ] /  

= O. (28) 

If 

= 0~ er, eu<r 

then condition (28) always holds and the second equation of system (27) has a solution which can be represented in 
the form 

c( t ,  13) = c(ol~(t) - N 
PN(a.)a~tlx t,13)+ Ro(x(',13),13)+ l lZ- I  I (.) 

~," [AilX(I)('Ci-,13)]+ gi(x('ci-,13),13)J 

(29) 

E(G[ Z~ + Ll['~r(S)C + X(1)(s's R(x(s'13)'s'E) ] )  

Jio (~i-, Co) + Ali [Xr(Zi-)c + x(1)('l:i - ,  13)] + Ri(x('C i -, 13), 13) (t) 

�9 "1- 13X(t)Q+{Jo(.,Co)Wll[~Tlr(.)c q" X(1)(', 13)] + R0(X(', 13), 13)} , 
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where c~l)(t) = PN(Bo)pC(t)E N(Bo), and PN(Bo)p is a matrix operator formed by p 

columns of the matrix operator PN(Bo ). 
With regard for (29), we can rewrite operator system (27) in the form 

c(t, e) = 
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linearly independent 

x(t, ~) = Xr(t)c(t, E)+x( ')( t ,  ~), 

(Py{ ,x ,.,e)+R(x(.,e),e)})(.) 

{ . (-[(LlX(1)(',~),',a)(s)+R(x(s,e),s,E)]] } (t,, 
PN(Q*)j l'x(1)(" E) + Ro(x(., e), e)+ I|L-I I (.) 

L AilX(1)('ci-,E)]+Ri(x('ci-,E), f-) ] 

(30) 

(~[ Z(S,r E) 1 I 
x(l)(t,e) = ~ G 

[ Jio(T.i-, Co)+ ali[Xr('Ci-)c+x(l)(T.i -, C)]+ Ri(x('~i-, g), 8)J (t) 

+ c0) + + x % ,  

Operator system (30) belongs to a class of systems which can be solved by the method of simple iterations [7]. 

We construct an iterative process for finding a solution x(t, 8) ~ DnSC, x(t, 0) = 0 of boundary-value 

(1) rt c) of x( l)(t, e) as solutions of boundary- problem (23) in the following way. We seek the approximations xk+,,, 
value problems 

(LXk+l)(t) = e{Zo(t, Co)+(Ll[X(.)ck+ x(kl)(',e)])(t)+R(xk(t,e),t,e)}, t:~'~i, 

AXk+' It=xi- SiXk+ 1 ('I:i-' E) = EJi(T, i -, CO) + E[Ail[X('ci-)c k + x(l)('l:i-, E)] + gi(Xk(T,i--, E), E)], 

lxk+ ~(-, e) = e[Jo(- ,  Co) + t~[~'(-)ck + x~')( ", e)] + Ro(X~(, e), ~)].  

0) (t, ~) of this boundary-value problem By Theorem 2 and expansions (24)-(26), we find the solution Xk+ l 
according to the relation 

|(~[l Z(S'Co)+LI[Xr(S)Ck+X~')(s'E)]+R(Xk(S'E)'s's ]] 
x(kl+), (t, E) e G  (t) 

[ [ Jio('Ci-,Co)+ Ali[Xr(Zi-)c k +x(l)(1:i-,e)]+ ei(Xk(Xi-,C),E ) 

+ c~'(t)Q+{S0( ., Co) + 1~ { ~( . )ck + x~%, e)} + Ro(xk(., e), c)}.  

The necessary and sufficient condition of the solvability of this boundary-value problem leads to an operator 
equation 

(BoCk(',s ( t ) = -  PN(Q*)d IllS(, ) (', e)+ Ro(X k (', E), s l(~, L- ILAtlXk(.Ci_,E)]+Ri(x(,Ci_,E),E)j)(LIx! )('' E))(s)+R(x(s, E), s, E)])  ,,J J J ' ( 3 l )  
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from which we determine a k th approximation c k(t, 8) of c (t, 8). Solvability criteria for systems of the form (31) 

hold on every step of the iterative process if 

= O. 
PY1 pN(Q,) d 

The approximation xk+i(t, 8) of x(t, 8) has the form 

- ( 1 )  ~t e). Xk+l(t,E) = Xr(t)c k + Xk+l,, 

Thus, the following theorem is true: 

Theorem 4 (sufficient condition), Let boundary-value problem (21) satisfy conditions (al)-(as) and let 

generating boundary-value problem (4)-(6) satisfy the conditions of Theorem 2. Then, for every value of the vec- 

tor c o ~ R r satisfying the system of equations (22)for generating amplitudes, boundary-value problem (21) has a 

p-parametric family of solutions z ( t, 8) ~ D n S C O if the condition 

= 0 (32) 

is satisfied. These solutions can be determined by the following iterative process convergent on [0, e . ]  C [0, 80]: 

zt+l(t ,  8) = Zo(t,c o ) = xk+l(t, 8), 

- -  . ( I )  t Xr(t)Ck(t, 8) + x~l)+l(t, 8), xk+l(t, 8) = Xo(t) % ( ) +  

�9 . (_ F(L,4'>(.,8))(s)+n(x,(s,8),s,8)l) ] (t), 
C(t, 8)  = C(1)(t) - B 0 PN(Q*)a itx(kt)(.,8)+Ro(x(.,e),e)+llL_ I I I ( - ) ~ . I  

LAi,x(k')(+i-, 8 ) ] +  Ri(Xk(+i-, E), 8)3 ) J J 

x(kl+)l(t, E) = 
( [  Zo(s, ]] 

8 a Jio(.Ci_,Co)_FAli[.~r(.Ci_)Ck+x~l)(.Ci_,8)]+ei(xk(,~i_,E),E) (t) 

+ 8.~(t)Q+ {Jo ( -, Co)+ ll[X,r(')ck + x~l)( ", 8)] + RO (x(', 8), 8)}. 

(33) 

Remark 3. If the linear operator B 0 is a Noetherian operator and dimkerN(B0) = 0, then the weakly 

nonlinear boundary-value problem (21) has a unique solution z(t,  8 )~  DnSCo that is transformed into the 

The interval [0, 8 .]  C [0, 80] on which iterative process (33) is convergent can be determined by the 
majorizing Lyapunov equations [8] similarly to the case of boundary-value problems for ordinary differential 
systems [3, 7]. 
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generating solution z (t, Co) with a constant c o satisfying the system of equations (22) for generating amplitudes. 

R e m a r k  4. If  the linear operator B 0 is a Fredholm one and dimkerN(B0)  = 0, then, due to the fact that 

PYt = 0 and PN(Bo ) = 0, condition (32) holds automatically. In this case, the weakly nonlinear pulse boundary- 

value problem (21) also has a unique solution and, in iterative procedure (33), the generalized inverse operator B o 

is replaced by inverse operator Bo I . 

R e m a r k  5. I f  initial operator equation (4) is everywhere solvable (dim kerL* = 0), then a projector P y  is 

equal to zero and condition (32) takes the form Py~ PN(Q*)j = O. 

As an example of a boundary-value problem of this sort, we consider a weakly nonlinear boundary-value 
problem for a pulse differential system with lag. 

Weakly Nonlinear Boundary-Value Problems for Pulse Differential Systems with Lag 

Preserving the notation of [4], we consider a weakly nonlinear boundary-value problem for pulse differential 
system with lag 

( L z ) ( t )  = ~ ( t ) - A ( t ) ( S h Z ) ( t )  = f ( t ) +  ~Z( (ShZ  ), t, E), 

A l t = ~ j - B j z ( ' ~ i -  ) = a j + E J j ( ( S h Z ) ( Z j - ,  E), ~) ,  (34) 

Iz = ot + EJ((ShZ)(. ,  E), E) 

the columns of an (n • N)-dimensional matrix A (t) and an n-dimensional vector f ( t )  belong to the 

space L"; 

(b2) Sh : D n --~ L N is an inner substitution operator defined by the equality S h = col [ S h~, S hz . . . . .  S hk ], 

where hi ( t  ) are measurable on [a, b], hi ( t  ) < t, i = 1, 2 . . . . .  k ,  and N = nk ;  

(b3) a nonlinear n-dimensional vector function Z(y ,  t, e) is continuously differentiable in y, continuous in 

e, and summable in t in a neighborhood of e = 0 antd of the solutions z ( t ,  Co) of the generating 
boundary-value problem; 

(b4) nonlinear n- and m-dimensional functionals J j ( y ( x j - ,  ~), E)  and J (y(-, a),  ~)  are (Fr6chet) 

continuously differentiable with respect to the first argument in a neighborhood of z ( t ,  Co) and E = 0, 

and are continuous in e for ~ ~ [0, sol ; 

(bs) l is a linear bounded m-dimensional vector functional, l: DnS ~ R 'n, and aj  E R n, j = 1 ,2  . . . . .  p; 

(b 6) ~ ~ R m. 

z( t ,  We consider the problem of finding existence conditions and an algorithm for construction of the solution 

under the following assumptions: 

(b~) 
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E) which belongs to the space Dns with respect to the first argument, belongs to the space of continuous functions 

C[0, %] with respect to the second argument, and, for e = 0, is reduced to one of the generating solutions Zo (t, Cr) 
of the generating boundary-value problem that is obtained from (34) if e = 0. 

Assume that f(t) ~ L n, c~ ~ R m, and aj ER n satisfy the conditions of Theorem 2. Due to the everywhere 
solvability of the Cauchy problem for the system with lag [condition (17) always holds], these conditions take the 
form [41 

PN(Q*)u{O~- l! K(',s)f(s)ds- i~=llX--i(')ai} = O, 

where 

K'i (t, s) 
i+1 

= X ( t )  H s - I  ( X v ) ( E  + Bv)X(Zv )s-1 (~i)Bi g('ci' ~)' 
v = k  

i+1 

Xi(t) = X(t) H X-I ('Cv)(E + Bv)X('Cv)X-1 ('ci)' 
v = k  

Here, 

a < "Ck_ 1 < S < Xi <'~k < t <-'~k+ l < b. 

i+1 

l'-I x-~ ( ~ ) ( E + 8 ~ ) X ( ~ )  = E 
v = k  

if k > i + 1 and K(t, s) is a Cauchy matrix for the differential system with lag. In this case, the generating bound- 
ary-value problem for (34) has an r-parametric family of solutions, which, for the pulse systems with lag, can be 
written in the form [4] 

where Xr(t ) = Xr(t)PN(Q) r is an 

value problem (5), (6) and 

z ( t ,  Cr) = G f( ' )  (t) Xr(t)Cr+ ( [ aj ]) + X(t)Q +~ 

(n x r)-dimensional fundamental matrix of the homogeneous pulse boundary- 

is a generalized Green operator for semihomogeneous pulse boundary-value problem (5), (6) having the form 

a (t) = K(t ,s) f(s)ds- ,Y(t)Q+l K(.,s)f(s)ds 
�9 a a 
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k '~i p 1~i 

+ Z f ~.(t,s)f(s)ds - X(t)Q +Z l~ ~.(.,s)f(s)ds 
i=I a i=I a 

k p 
+ Z X i ( t ) a i -  X ( t ) Q + Z  IXi(')ai + X(t)Q+ ~" 

i=1 i=1 

We now consider necessary and sufficient conditions for the existence of solutions of boundary-value problem 
(34). 

Theorem 5 (necessary condition). Let  the weakly nonlinear boundary-value problem (34) with pulse 

influences at f ixed times have a solution z ( t, E) ~ DnSC. Assume that, for ~ = O, this solution is reduced to one 

of  the generating solutions Zo(t,  Cr) o f  the linear Noetherian boundary-value problem with a constant  

c r =c o ~ R r which is generating for  problem (34). Then the vector c o satisfies the  equation for  generating 

amplitudes o f  the form (22): 

{ ' , ) PN(Q*)d J((ShZo)(', Cr), O) - I f  Ki( ' ,  s)Z((ShZo)(', Cr)(S), S, O)ds - Z lXi(')JJ((ShZo)(~j' Cr)' 0)  = 0, (35) 
a i=l 

Rm where P N( Q') d is a (d x m)  matrix whose rows are d-linearly independent rows of  the matrix P N( Q *) : --~ 

N(Q*),  Q = lX(.  ), and X ( t )  is a fundamental matrix of  the pulse differential system with lag. 

Note that, due to the everywhere solvability of the initial pulse differential system with lag, system (22) consists 
of a single equation. 

In order to find sufficient conditions for the existence of a solution of boundary-value problem (34) and an 
algorithm of its construction, we reduce this problem in the way already described to an equivalent operator system. 

By analyzing this system, we obtain the sufficient condition for the existence of solution z( t ,  e)  of the initial 
boundary-value problem. 

After changing the variables z(t ,  e ) =  Zo(t, Co)+ x(t ,  e),  where Zo(t, c o) is a generating solution with a 

vector constant c o ~ R r, which satisfies the equation for generating amplitudes (35), we obtain the boundary-value 
problem 

( L x ) ( t )  - : r  t r  

:' I,=~- Bjx(xi - )  = EJ~ (Sh[Zo(', Co) "+ x(., E)]('c~-), e), 

lx( . )  = EJ(Sh[zo(. ,  Co) + x(. ,  e)], e) 

for finding the deviation of x(t ,  E) from the generating solution, which belongs to the space D n s c  and vanishes 

for ~=0 .  
By using conditions (b3) and (b4) on the nonlinearities Z ,  Jj, and J in a neighborhood of the generating 

solution Z o ( t, Co), we select from the vector functions Z ( S h[ z o + x ] , t, ~ ), Jj ( S h[ Z o + x ], E ), and J ( S h[ Z 0 + x ], 

e) their linear parts in x and terms of zero order in ~: 

Z((Sh[ZO(.,  CO) +x(-,  e])( t ) ,  t, E:) = Z((Shzo( . ,  Co))(t ), t, 0) + A l ( t ) ( S h X ( . ,  e)) (t) + R((ShX(., e)(t), t, ~), 
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where 

A l ( t  ) = Al( t ,  Co) - 

is an (n • N)-matrix of  the class L n, 

R(0, t, o )  = o, 
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OZ(Shz,oshZt, O) (Shz)(t)=(Shzo)(t �9 CO) 

OR(O, t, O)/OShX = 0; 

where 

are 

Ji(Sh[ZO(', CO) + X(., e ) ] ) (Z j - ) ,  e)  = Ji(ShZo(', CO))(Z~-), O) 

+ A lj (ShX(', E))(Zj -)+ Rj (Sh(X(. , a)(Zj -), e), 

OJj(Shz, O) Shz = ' J = 1 . . . . .  p, 
A lj - OShZ ShZo(XJ -'cO) 

(n x N)-dimensional constant matrices, 

Rj(O, O) = O, ORj(O, O)]OShX = O, 

J(Sh[Zo(., c o + x(., E)](-) ,  E) = J(ShZo(', CO))('), 0)  + ll(ShX(., a ) ) ( ' )  + R0(ShX(-, E)( .) ,  e),  

l I is a linear part of a vector functional 

J(zo(-, co) + x(,  e), e), 

Ro(0,  0)  = 0, 0Ro(0, 0) = 0. 
OShx 

Theo rem  6 (sufficient condition). Let boundary-value problem (34) satisfy conditions (bl)-(b6) and let the 

generating boundary-value problem satisfy the conditions of Theorem 2. Then, for  every value of the vector 
c o ~ R r satisfying the equation for generating amplitudes (35), unde~ the condition 

PN(I~)PN(Q*)d = O, 

boundary-value problem (34) has a p -parametric family of solutions z(t, e) ~ Dnsc ,  which is reduced to a 

generating one Zo(t, Co) for ~ = O. These solutions can be determined by means of the following iterative 

process convergent on [0, E.] C [0, to ] :  

Zk+l(t,E) = Zo(t, Co)+ Xk+I(t,E), 

- ~(1) ~t e ) ,  Xk+l(t, E) = Xp(t)Cp + Xr(t)c~ l) + ~k+l'' 
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+ { (1) ck = Pu(%)oc p + c~ l) = PN(Bo) Cp + B~ PN(Q% llShXk (', ~) + Ro(Shx~(' ,  e), ~) 

b 
l~ (1) - K(., s)[Al(s)(ShX k (., E))(s) + R(ShXk(', e) ) ( s ) ,  s, ~]ds 

(l) ]} - ZIXi(')[Ali(S)(Shx (', E))(%i-)  + Ri(ShXk(', E)(%i-) ,  S, E) , 
i=1 

(36.) 

x(l) g, ~) = E~x(t)Q+{J(ShZo(. Co),O)+llSh[Xr(.)Ck+X~l)(.,E)] + Ro(ShXk(.,E) ) } k+l~ ~, 

I I Z((ShZo(',Co)(*)),*,O) + AI(*)Sh[Xr(')Ck + X~I)(',e)](*)+ R((ShXk(',E)(*),*,e) I I  

+ E G JJ((ShZo ('' Co))(~J-)' O) + AljSh[Xr(')C k + xil)(  -, E ) ] ( I : j - )  + Rj(ShXk(. , E)(%j-), E) (t) ,  

Xo(t,  ~) = X~oL)(t, ~) = o, 

where 

B 0 = PN(Q,)a llSh.~r(. ) - l K(' ,s)AI(s)ShXr(')ds- ZlXi(')Ali(s)(ShX.r)('Ci) 
a i=1 

is a ( d • m )-dimensional constant matrix. 

Remark 6. I n  the case  where  PN(Bo ) = 0, the w e a k l y  non l inea r  pu l se  p r o b l e m  (34) has  a un ique  so lu t ion  

z(t, E) E Dnsc  which is reduced  to a genera t ing  one for  e = 0. 

Remark 7. In the case  o f  F r e d h o l m  boundary -va lue  p rob l ems  (m = n) ,  the cond i t i on  Pu (e0  ) = 0 i m p l i e s  that  

PN(B;) = 0, whence  condi t ion  PN(B~)PN(Q,)a = 0 holds  automat ica l ly .  It fo l lows  f rom PN(Bo ) = 0 that  d e t B  0 g: 0, 

and B~" is rep laced  by  Bff I in i terat ive procedure  (36). 
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