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INTRODUCTION
The timely and reliable information on crops’ water and
nutrient status is of critical importance in the condi-
tions of modern precision agriculture and smart farms.
By 2050, the world population is expected to increase
to almost 10 billion people, and to feed them, existing
food production must be increased by 59-98% accord-
ing to estimates by the Food and Agriculture Organi-
zation (FAOQ, 2023). It is also estimated that agriculture
will use over 70% of the world’s freshwater reserves,
with about half of it being lost or wasted. Up to 95%
of the world’s food production depends on soil. As a
result of unsustainable agricultural practices, overex-
ploitation of natural resources, and growing popula-
tions, one-third of the soils have already degraded, and
experts estimate that soil erosion could lead to a 10%
loss of crop yields by 2050. Soils are also full of life and
contain approximately 25% of the world’s biodiversity.
Globally, remote sensing (RS) has been supporting de-
cision-making in the field of agriculture for many years.

Several previously published literature reviews par-
tially examine the application of the RS in the crops’
water status and nutrients determined in agriculture.
M. Weiss et al. (2020) conducted a meta-review of agro-
nomical variables and plant traits that can be estimat-
ed from remote sensing. They described different meth-
odological approaches to retrieve them, discussed how
these variables are employed by different stakeholders
for specific applications and concluded with an over-
view of caveats and future challenges. A. Konings et al.
(2019) presented a review of microwave remote sens-
ing observations sensitive to plant water content. They
introduced the principles behind microwave remote
sensing observations to illustrate how they are sensi-
tive to plant water content and discussed how various
sensor types can be leveraged for specific applications
depending on the spatiotemporal resolution needed.
M. Bacco et al. (2019) provided a survey of the most
recent research activities in the area of digitalization
of agriculture, in the form of both research projects and
scientific literature, to show the already achieved results,
the current investigations, and the still open challenges,
both technical and non-technical. G. Lassalle (2021) con-
ducted a meta-review about the advances achieved in
monitoring natural and anthropogenic plant stressors by
hyperspectral remote sensing over the last 50 years. He
presented advances in hyperspectral monitoring of plant
stress with a total of 466 peer-reviewed articles.

N. Katsoulas et al. (2016) conducted a review of
crop reflectance monitoring as a tool for water stress
detection in greenhouses. They presented challenges of
detecting water status in greenhouses by remote sens-
ing, discussed sensors available for reflectance sens-
ing and applications, effects of environmental, canopy
structure and other parameters and proposed possible
solutions to mitigate the effects of those parameters.
U. Ahmad et al. (2021) conducted a review on crop
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reflectance monitoring as a tool for water stress detec-
tion in greenhouses. They reviewed past research and
recent advances regarding the sensors and approaches
used for crop reflectance measurements and the indi-
ces used for crop water and nutrient status detection.
A. Damm et al. (2018) conducted a review of remote
sensing of plant-water relations. They reviewed suita-
ble remote sensing approaches to assess plant-water
relations ranging from pure observational to combined
observational-modelling approaches. They used a com-
bined energy balance and radiative transfer model to
assess the explanatory power of pure observational
approaches focusing on plant parameters to estimate
plant-water relations, followed by an outline for a more
effective use of remote sensing by their integration into
soil-plant-atmosphere continuum (SPAC) models. It is
possible to conclude that there are similar studies, but
they are not categorized as in this publication - from
the general to the particular, from the global scale to
the leaf level.

The research aims to present a thorough examina-
tion of contemporary technologies and methodologies
employed in remote sensing to precisely evaluate the
water conditions and nutrient concentrations in crops.
The ultimate goal is to improve agricultural efficiency
and promote sustainable practices.

REMOTE SENSING CROPS
ON LARGE SCALE LEVEL

Improved satellite data resolution from platforms like
Landsat 8 and Sentinel-2 has opened up new possibili-
ties for monitoring crop conditions and mapping yields
on a larger scale in agriculture. J. Clevers et al. (2017)
utilized Sentinel-2 satellite images to estimate LAl,
LCC, and CCC of potato crops using vegetation indices
(VIs). Their study found that Sentinel-2 bands with a
10 m spatial resolution were sufficient, eliminating the
need for red-edge bands with a 20 m resolution.). Miao
et al. (2022) employed machine learning models to es-
timate leaf nutrient levels in mangrove forests using
Sentinel-2 images. They compared XGBoost, RF, and
LightGBM models and mapped nutrient levels for mul-
tiple seasons, highlighting the importance of monitor-
ing seasonal changes. A. Hama et al. (2022) introduced
a low-cost LiDAR approach to estimate leaf water con-
tent (LWC) by measuring reflectance in the 905 nm
band, which was found to be closely related to leaf
structure. T. Dong et al. (2020) utilized Landsat 8 and
Sentinel-2 data to estimate crop biomass in Manitoba,
Canada, by parametrizing a crop growth model using
remotely sensed LAI. Lastly, I. Sanches et al. (2014) used
spectral feature analysis to detect plant stress in visi-
ble/near-infrared wavelengths, identifying a new index,
PSDI, effective for detecting stress in hydrocarbon-im-
pacted plants based on field and airborne data. Table 1
presents the above data in a summarized form:
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Table 1. Examples of RS crops on large scale level

Source Sensor Crop Estimation Results
At 10 m spatial resolution:
WDVI estimating LAl with R?=0.80, RMSEP=0.36;
LAl CVI estimating LCC: R?=0.656; RMSEP=0.066 g-m);
(Clevers Sentinel-2 satellite Potato LCC" Clgreen linear estimator of CCC: R2=0.818;
etal, 2017) images ccC RMSEP=0.29 g-m™?;
At 20 m spatial resolution:
TCARI/OSAVI linear estimator of LCC: R?=0.696,
RMSEP=0.062 g-m™
Seasonal leaf XGBoost demonstrates high accuracy in estimating leaf C,
(Miao et al nutrients: N, and P levels with R? values of 0.655,0.799, and 0.829
2022) N Sentinel-2 image Mangrove carbon (C), in spring, summer, and winter for leaf C,and R? values of
nitrogen (N) and  0.668,0.743,and 0.704 for leaf N, and R? values of 0.539,
phosphorus (P) 0.622,and 0.596 for leaf P
leaves Using LiDAR reflectance, the estimation of LWC (Liquid
(Hama et al., LiDAR and of sweet LWC by LiDAR Water Content) achieves a high level of accuracy, with an R?
2022) hyperspectral data otatoes reflectance value of 0.950, an RMSE (Root Mean Square Error) of 6.78%,
P and a MAPE (Mean Absolute Percentage Error) of 18.6%
Anola The accurate estimation of above-ground dry biomass
5o bea’n Cron biomass for these six crops is achieved by assimilating LAl data
(Dong et al., Landsat 8 and whe);t cor’n usinp remotel obtained from satellite sources. The estimation yielded
2020) Sentinel-2 data oats 'and ’ se?]sed LAl Y favourable results, with an R? value of 0.81, an RMSE of
beans 135.4 g/m?, a normalized RMSE (nRMSE) of 37.9%, and a
relative per cent difference (RPD) of 2.26
ProSpecTIR-VS Forages Plant stress in
(Sanches airborne imaging brachiaria hydrocarbon- Among the leaf data, the PSDI and chlorophyll feature
spectrometer for grass and - . area demonstrated the highest proportion (67-70%) of
etal, 2014) far-range field erennial contaminated soil, lants exhibiting signs of stress
h 9 P true leaf data P 9519
yperspectral RS data  soybean

Source: developed by the author

REMOTE SENSING CROPS ON THE FIELD LEVEL
T. Silva et al. (2022) conducted on-site measurements
of chlorophyll levels in grapevines to assess their ni-
trogen status. The study established a relationship be-
tween chlorophyll meter readings and actual leaf nitro-
gen contents. C. Aradjo-Paredes et al. (2022) evaluated
the accuracy of using an aerial sensor to estimate plant
water status (PWS) through the Crop Water Stress Index
(CWSI). They compared CWSI values derived from aerial
thermographic and portable thermal cameras with
measurements of stem water potential and demon-
strated the feasibility of estimating CWSI and generat-
ing spatial maps using aerial thermography. H. Zheng
et al. (2018) assessed the performance of three sen-
sors on an unmanned aerial system (UAS) for estimat-
ing nitrogen status in rice. They employed various Vis
to estimate leaf and plant nitrogen accumulation and

evaluated their integration with field data. P.Rosso et al.
(2022) compared ground-based LAl data with remote
sensing information using Vls, machine learning, and
radiative transfer models in barley experiments. They
determined that machine learning algorithms and Vls
performed well, indicating the potential of using satel-
lites and remotely piloted aircraft in precision agricul-
ture. Du et al. (2022) used a multi-rotor UAV equipped
with image sensors to gather maize canopy data and
developed models for LAl estimation using different
algorithms. N. Katsoulas et al. (2016) utilized ML algo-
rithms to estimate NDVI in Arabica coffee cultivars us-
ing a passive RGB sensor in a UAV. They derived an NDVI
equation based on RGB bands and found satisfactory
agreement compared to in situ data, providing a simple
method for evaluating vegetative vigour. Table 2 pre-
sents the above data in a summarized form:

Table 2. Examples of RS crops on field level

Source Sensor Crop Estimation Results
The generated models produced estimations for
chlorophyll a, b, and total with calibration errors of 0.98,
(Silva et al., Chlorophyll Wine grape Chlorophvll 0.58,and 1.47ug ml* cm?, respectively. For prediction,
2022) hand-held meter  “Chardonnay” phy the errors are 1.03,0.67,and 1.49 ug ml* cm2. In

terms of leaf nitrogen content, the calibration error is
1.49 g kg, while the prediction error is 3.39 g kg*

Scientific Horizons, 2023, Vol. 26, No. 9

169



State-of-the-art technologies for remote sensing of crops water status...

Table 2, Continued

Source Sensor Crop Estimation Results
Among the two models analysed, it is observed that for
CWSITair, CWSIS demonstrated better evaluation of crop
(Araujo- water stress compared to stem water potential, with an
Paredes et al, Thermal Imagery Grape vine CWsSI R? value of 0.55. Additionally, CWSIS exhibited a strong
2022) correlation with the portable sensor, with an R? value of
0.58, indicating its potential for practical application in
field measurements
The findings indicated that the red edge (VIs) derived
from multi-spectral (MS) images achieved the
RGB, colour- highest level of accuracy in estimating Leaf Nitrogen
(Zheng et al., infrared and Rice Nitrogen status Accumulation (LNA) with R? values ranging from 0.79
2018) multispectral 9 to 0.81 and RMSE values of 1.43 to 1.45 g m™. Similarly,
cameras for Plant Nitrogen Accumulation (PNA), the red edge Vls
demonstrated strong performance with R? values ranging
from 0.81 to 0.84 and RMSE values of 2.27 to 2.38 g m™?
The coefficients of determination obtained from all
(Rosso et al Sentinel-2, approaches ranged from approximg@ely Q.7 to 0.9.When
2022) 7 Landsat and Barley LAI only four Sentinel-2 bands are utilized instead of the
Sen2-Agri full set of 12, the top-performing ML algorithms achieve
even higher levels of accuracy
There is a strong correlation between RGB-based Vs and
CMOS sensors LAI.Thg (RF model.outper_formed other mogels across
the entire observation period as well as during specific
(RGB bands of - ; ”
(Du et al. spectral ) growth stages. It ex2h|b|teq the highest coefficients
2022) ’ and spatial Maize LAI of determination (R?) ranging from 0.71 to 0.88 and
information of the lowest RMSE values ranging from 0.12 to 0.25 on
image pixels the test datasets. Following the RF model, the BPNN
(Backpropagation Neural Network) model and LR models
also showed good performance
(de Oliveira Passive RGB 20 Arabica Foliage level A high ratio between the foliage level and the NDVI can
etal, 2022) sensor on UAS  coffee cultivars 9 be observed (r=0.97, p-value < 0.01)

Source: developed by the author

REMOTE SENSING CROPS
ON THE GREENHOUSE LEVEL
Q.Lietal (2022) investigated the relationship between
soil water content (SWC), drought stages of wheat, can-

opy temperature, and spectral response characteristics.

They found that red-valley position (RVP) and red-edge
position (REP) parameters showed significant shifts
during certain drought stages of wheat, while vegeta-
tion water indexes effectively distinguished different

levels of water stress across various growth stages.

A.Bianchi et al. (2017) developed a water balance mod-
el based on the FAO-56 method to schedule irrigation

for greenhouse spinach crops. They found that nitrogen
treatment had minimal impact on crop development
and irrigation requirements. C. Ru et al. (2020) exam-
ined the effectiveness of using the CWSI based on leaf
temperature to assess the water status of grapevines.
They determined the optimal time and conditions for
observing CWSI values and concluded that CWSI was
more effective than Tc-Ta (canopy temperature minus
air temperature) in monitoring plant water stress, with
stomatal conductance (gs) showing the strongest cor-
relation with CWSI. Table 3 presents the above data in
a summarized form:

Table 3. Examples of RS crops on the greenhouse level

Source Sensor Crop Estimation Results
The presence of water stress at various growth stages
Water stress resulted in noticeable variations in spectral characteristics.
(Li et al, Ground hyper- Wheat during tillering,  Notably, there are significant differences in SWC and canopy
2022) spectral RS jointing and temperature across different stages of wheat drought, with
milk maturity.  the jointing stage experiencing the most pronounced changes
in canopy temperature
The FAO-56-GH model demonstrated favourable performance
during both the validation and calibration periods, as
(Bianchi Spinach Water indicated by the evaluation metrics. In the validation period,
etal., RGB images (Spinacia ] the model exhibited a coefficient of determination (R?) of
2017) oleracea) requirements 0.80,an RMSE of 0.41 mm day, and an NSE of 0.78. Similarly,

during the calibration period, the model achieved an R? of
0.84,an RMSE of 0.21 mm day?, and an NSE of 0.83
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Table 3, Continued

Source Sensor Crop Estimation Results
The correlation between the leaf-air temperature difference
(T-T,) and indicators of PWS (¢, g, E) is statistically
Leaf significant (P<0.05). Among these indicators, the relationship
(Ru et al., Infrared Grapevines temperature, between g, E,and T -T_is particularly strong, with R? values
2020) thermometer P Water status - ranging from 0.530 to 0.604 and from 0.545 to 0.623,

water stress

respectively. Additionally, there is a reliable linear correlation
between the CWSI value and soil moisture at depths of
0-40 cm, with statistical significance (P<0.05)

Source: developed by the author

REMOTE SENSING ON PLANT LEVEL
N. Chandel et al. (2022) developed a non-invasive
method using computer vision and thermal-RGB imagery
to detect water stress in winter wheat crops. Deep learn-
ing models and function-approximation models are uti-
lized to classify crops as stressed or non-stressed based
on thermal-RGB images and various input parameters.
P. Lépez-Garcia et al. (2022) conducted experiments to
assess the impact of different water qualities and irri-
gation start times on crop growth. LR techniques and
ANN models are trained using multispectral and RGB

data to simulate water stress.J. Fernandez-Novales et al.
(2021) focused on assessing the water status of grape-
vines using leaf water potential and canopy temperature
measurements. Spatial-temporal maps are generated to
analyse variations in water status. S. Zhuang et al. (2017)
developed a model for early identification of water stress
in maize using image analysis. A two-stage detection
model based on gradient-boosting decision trees is used
to distinguish between adequate water supply and wa-
ter stress conditions in maize fields. Table 4 presents the
above data in a summarized form.

Table 4. Examples of RS crops on the plant level

Source Sensor Crop Estimation Results
Different irrigation treatments significantly affect measurements of
canopy temperature (Tc), relative water content (RWC), SMC, and RH
concerning crop and soil responses. The 100% ETc treatment resulted
in the lowest Tc (22.5%2°C), highest RWC (90%), and highest SMC
RGB and (25.7%2.2%), while the 25% ETc treatment had the highest Tc (28+3°C),
(Chandel  thermalimagery  Winter Crop water lowest RWC (74%), and lowest SMC (20.5+3.1%). ResNet50 performed
etal,2022) plus computer wheat stress the best among feature extraction models, achieving a discriminant
vision accuracy of 96.9% with RGB inputs and 98.4% with thermal imagery
inputs. Thermal imagery generally provided higher classification
accuracy compared to RGB imagery. Among function approximation
models, the DL-LSTM model achieved the highest discriminant accuracy
of 96.7% and displayed lower errors in stress/non-stress classification
Utilizing ML techniques, such as ANN models, is an efficient approach to
analysing data obtained through UAV remote sensing for the estimation
(Lopez- Multispectral of S . These models outperform LR models and using RGB bands and GCC
Garciaetal, and RGB UAV Vineyard Water Status  as inputs leads to satisfactory outcomes. High-resolution RGB cameras
2022) Imagery are a cost-effective alternative to multispectral and thermal sensors, with
promising results. To avoid soil effects and obtain precise GCC values,
accurate vegetation segmentation is essential
Ground drone; The researchers employed Partial Least Squares (PLS) regression to
(Fernandez- Thermal develop calibratiop and prgdjction models. The ﬁnc}ings revealed
Novales infrared Grapevine PWS that the most effective prediction models for grapevine water status
et al, 2021) radiometry and achieved a cross-validated determination coefficient (r? ) of 0.57 in the
N multispectral morning and 0.42 at midday. The RMSE of cross-validation (RMSE ) was
sensor determined to be 0.191 MPa in the morning and 0.139 MPa at midday
(Zhuang RGB outdoor Maize Earsltyr‘\e/vsaster The accuracy of identifying three different water treatments is found to
etal.,2017) camera detection be 80.95%, while the accuracy of detecting water stress is 90.39%

Source: developed by the author

REMOTE SENSING ON LEAF LEVEL
In 2015, Dhillon introduced the “Leaf Monitor,” a contin-
uous leaf monitoring system specifically designed for
measuring the PWS of almond and walnut trees. The
Leaf Monitor system utilized a thermal infra-red sensor
to measure leaf temperature and integrated additional
sensors to monitor various environmental factors such

as air temperature, relative humidity, photosynthetically
active radiation (PAR), and wind speed. To optimize its
performance, the system included a leaf holder, a so-
lar radiation diffuser dome, and a wind barrier. These
systems were interconnected in a wireless mesh net-
work, allowing data collection and transmission every
16 minutes through the internet.

Scientific Horizons, 2023, Vol. 26, No. 9
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In a subsequent study published in 2019 by the same
research team led by Dhillon, they developed a method-
ology to predict PWS in almond and walnut trees using
the continuous leaf monitoring system. The researchers
collected data on leaf temperature and environmental
conditions using the Leaf Monitor system. These data
were then utilized to calculate a Modified CWSI, which
served as an indicator of the plant’s water status. Before
an irrigation event, MCWSI values were estimated and
used to determine the appropriate irrigation amount for
low-frequency variable rate irrigation (VRI). The irrigation
amounts were based on the correlation between MCWSI
and Drought Stress Water Potential (DSWP). By imple-
menting variable rate irrigation, the researchers achieved
a significant average reduction of 39% in water consump-
tion compared to the fixed 100% evapotranspiration (ET)
replacement irrigation method for all the trees.

Analysing strawberry leaf colour can effectively
help evaluate soil status and protect against excess
environmental nutrients and financial losses in straw-
berry crops (Madhavi et al., 2022). The objective of this
study was to create ML models, specifically multiple
linear regression (MLR) and gradient boost regression
(GBR), that can simulate variations in strawberry leaf
colour. These colour changes are based on soil physic-
ochemical properties and plant age, using mean values
of the RGB channels. Accurate measurements of soil
physicochemical components were obtained from the
largest and most diverse coloured leaves of the straw-
berry plants using a multifunctional soil sensor in the
rooting zones. Additionally, 400 strawberry leaflets
were sampled at different stages of vegetative and re-
productive growth, and individual leaves were captured

using a digital imaging system.The RGB mean values of
the coloured leaf images were extracted using image
segmentation algorithms incorporated into image pro-
cessing techniques. Subsequently, MLR and GBR mod-
els were developed to predict the RGB mean values of
the leaves based on the soil physicochemical measure-
ments and plant age. The GBR model demonstrated
superior performance compared to the MLR model,
achieving high-performance metrics.

Several other studies have explored the use of
advanced techniques for assessing PWS and health in
various crops. F. Hahn et al. (2021) focused on man-
go trees and employed dendrometers and capacitors
with Teflon clamps to measure LWC and examine the
influence of water on mango production. H. Skoneczny
et al. (2020) investigated the potential of non-invasive
proximal hyperspectral remote sensing (RS) to dis-
tinguish between healthy, infected, and dry leaves of
apple trees using spectral bands and indices. F. Rojo
et al. (2016) proposed a new method for calculating
CWSI and Modified CWSI using continuous leaf monitor
data in almond orchards and vineyards to implement
site-specific irrigation management. J. Rodriguez-Perez
et al.(2018) compared ordinary least squares regression
(OLSR) and functional linear regression (FLR) models
to predict LWC using reflectance data and wavelengths
in grapevines. T. Zhao et al. (2020) used hyperspectral
imaging to evaluate water status in tomato leaves and
computed vegetation indices (Vls) to assess LWC in dif-
ferent parts of the plants. These studies highlight the
potential of advanced techniques in monitoring PWS
and health for improved crop management.Table 5 pre-
sents the above data in a summarized form.

Table 5. Examples of RS crops on leaf level

Source Sensor Crop Estimation Results
Thermal infrared sensor
(Dhillon, for conttinuausly monttor In almond: MCWSI and DSWP linearly related,
2015; the tempberatiure 0" €9V Almond WS r2=0.67;
. as well as the ambien . .
et%?llzlgqg) temperature, relative humidity, and walnut In walnuts,rl;/ltg\t/;/osrllsahnig RDZS;\g/F;én quadratic
N photosynthetically active ’
radiation (PAR), and wind speed
. GBR model, utilizing RGB mean values throughout
IﬁeGan E,Ioégﬁrvglﬂzg the growth stage, demonstrated a good fit with
Based on Soil R? and RMSE values of (R=0.77,7.16,G=0.72,7.37,
(Madhavi RGB camera with a pixel Strawberrv  Physicochemical and B=0.70, 5.68), respectively. On the other hand,
etal,2022) resolution of 5472 x 3648 y Par)a/meters Usin the MLR model performed moderately, with R2
Machine 9 and RMSE values of (R=0.67,8.59,G=0.57,9.12, and
Learnina Models B=0.56, 6.81), when predicting RGB mean values
9 consecutively in strawberry leaves
. -, The capacitance and Hall effect sensors can
(Hazhgzell; al, InductlvcesgggogjpaC|tlve Mango Leaf Monitoring produce signals that can be used for scheduling
irrigation based on predetermined thresholds.
The 1450 nm band in the SWIR range effectively
Hyperspectral ~ separates infected (I) and healthy (H) leaves, while
(Skoneczny Non-invasive proximal Apple Analysis of the 1900 nm SWIR band distinguishes all three
et al, 2020) hyperspectral RS PP Healthy, Infected leaf types. Pearson correlation tests revealed

and Dry Leaves that ARI, MSR, and QFI showed the strongest

correlations with the progression of infection

Scientific Horizons, 2023, Vol. 26, No. 9
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Table 5, Continued

Source Sensor Crop Estimation Results
te%)ggrr:,:&ues rivgr!\:tgi?rig Almond In grapes: MCWSI and DSWP are linearly related,
H ; 2= .
(Rojo et al, system and soil and pressure orchards PWS with R*=0.70;
2016) sensors. latching solenoid and In almonds, CWSI and DSWP strongly correlated
’ valvesg Vineyards with a second-order relationship and R?=0.78
The most accurate model is achieved by utilizing
. ) functional linear regression (FLR) within the
(Rodriguez Four grape LWC’expressed as spectral range centred around 1465 nm, resulting
Perez et al., Hyperspectral 2 equivalent water = ; S B
varieties ] in a coefficient of determination (R?) of 0.70 and
2018) thickness o
a percentage root mean squared error (%RMSE)
of 8.485
The most successful regression model for
evaluating water content (WC) is obtained
by utilizing TBI regression with DIFF data at
1410 nm and 1520 nm wavelengths. Similarly, the
(Zhao et al, most efficient regression model for determining
2020) Portable hyperspectral camera Tomato Leaf Water Status moisture content (MC) is achieved through

NDVI regression with RAW data at 1300 nm and
1310 nm wavelengths. The models used for
the MC assessment showed better performance
compared to those used for the WC assessment

Source: developed by the author

CUTTING-EDGE TECHNOLOGIES
Industries are moving towards smart factories, and
the agricultural sector should also embrace the con-
cept of smart farms. Unmanned ground vehicles (UGVs)
play a vital role in the development of smart farms
(Gonzalez-De-Santos et al, 2020). While there are
similarities between smart factories and smart farms,
specific research is needed to address the unique char-
acteristics of UGVs designed for outdoor agricultural
tasks. Multi-drone systems consisting of smaller or
medium-sized drones can perform tasks with greater
accuracy, tolerance, and safety compared to larger ma-
chines. Autonomous drones, whether operating alone
or in fleets, are essential for the precise application of
herbicides and fertilizers. This approach reduces chem-
ical usage, resulting in benefits such as lower costs,
improved operator safety, enhanced community health,
and higher food quality with reduced toxicity.

The Research Centre for High Technology Green-
house Plant Production at Ehime University is working
on a project called “Intelligent Greenhouse Systems,”
in which the main concept is the “Speaking Plant” ap-
proach (Hiroshige, 2015). The SPA approach suggests
that the best way to grow crops is by considering the
plants’ physiological status. To implement SPA, a chlo-
rophyll fluorescence imaging drone is developed to
measure the photosynthetic activity of tomato plants
in greenhouses. This drone is designed to be low-cost,
easy to use, and suitable for commercial tomato pro-
duction. The researchers also studied how storage tem-
perature affects tomato fruit colour using multiple re-
gression analysis to improve postharvest management.

This study (Kalaitzoglou et al., 2021) aims to inves-
tigate how blue light affects plant growth by measuring
light absorption and photosynthesis in tomato plants.
The experiment involved growing tomato plants in

six different combinations of artificial solar and blue
LED light, with varying levels of blue light. The results
showed that increasing the blue light fraction led to a
decrease in plant growth, which is related to a more
compact plant morphology and lower light absorption.
However, the blue light did not affect the plants’ maxi-
mum photosynthetic capacity. The study suggests that
increasing blue light in a solar light environment can
hinder plant growth, but further research is needed to
confirm this in high-light growth environments typi-
cally used in tomato production.

A digital twin refers to a virtual representation of a
farm that offers benefits such as increased productiv-
ity, improved efficiency, and reduced energy consump-
tion and losses. A. Nasirahmadi and O. Hensel (2022)
presented a comprehensive overview of digital twin
concepts and technologies in the field of agriculture.
It covers various aspects including soil management,
irrigation, robotics, farm machinery, and post-harvest
processing. The review explores data recording, model-
ling, artificial intelligence, big data, simulation, analysis,
prediction, and communication aspects of digital twin
systems in agriculture. By continuously monitoring the
farm in real time and updating the virtual model to re-
flect changes in the physical environment, digital twins
provide valuable support to farmers. This technology
represents the cutting-edge advancement in the digital
transformation of the agricultural sector.

C. Pylianidis et al. (2021) used a combination of
qualitative and quantitative methods to explore the
advantages of digital twins in the agricultural domain.
The study begins with a comprehensive literature re-
view focusing on digital twins in agriculture between
2017 and 2020. By examining 28 use cases and compar-
ing them with examples from other fields, the research-
ers assess the extent of digital twin implementation in
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agriculture. They analysed reported benefits, service
categories, and technology readiness levels to evaluate
the adoption of digital twins in the agricultural sector.
Furthermore, the study identifies specific characteris-
tics of digital twins that can be beneficial in agricul-
ture and proposes a roadmap for their implementation,
considering increasing levels of complexity. Ultimately,
the research underscores the distinctive attributes of
digital twins that make them particularly valuable in
the context of agriculture.

“Agri-Food 4.0 is a term used to describe the latest
developments in the agriculture sector, which includes
the integration of digital technologies and the Inter-
net of Things. Similar to the concept of “Industry 4.0,
Agri-Food 4.0 aims to optimize efficiency and produc-
tivity through the use of these technologies. While the
agriculture sector has already incorporated electronic
controls and data collection methods through sensors
and drones, there is still a need to improve supply chain
performance and decision-making processes. This sur-
vey (Lezoche et al, 2020) reviews over a hundred pa-
pers on new technologies and supply chain methods to
understand the future of Agri-Food 4.0.

According to the United Nations Development Pro-
gramme (2021), global agriculture and food systems
are under constant enormous pressure. It is estimated
that by 2050 the world population will grow to almost
10 billion people and to feed it, current food produc-
tion must be increased by 59-98% (Domingues et al.,
2022). It is also estimated that agriculture uses over
70% of global freshwater supplies, with around half of
this being lost and wasted. Globally, about one-third of
the food produced is wasted or thrown away. Agri-food
is at the heart of the United Nations 2030 Agenda and
impacts all 17 Sustainable Development Goals.

In 2019, the twenty-six EU member states signed
a declaration of cooperation to support the successful
digitization of agriculture and rural areas in Europe. In
it, they recognize the potential of digital technologies
to help tackle important and pressing economic, social,
climate and environmental challenges facing the EU’s
agri-food sector and rural areas. In 2022, FAO calls for
an end to soil degradation. Up to 95% of the world’s
food production depends on soil. As a result of unsus-
tainable farming practices, overexploitation of natural
resources and a growing population, one-third of soils
have already been degraded, and experts estimate that
soil erosion could lead to 10% crop loss by 2050. Soils
are also full of life and contain approximately 25% of
the world’s biodiversity (FAO, 2023).

The introduction of so-called precision agriculture
(PA) and digital technologies in the field of agriculture
are ways to optimize and improve the processes in it.
New digital technologies make farming more acces-
sible, using a combination of different technologies
working together to improve the precision of farming,
including high-speed internet (5G) mobile phones,
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high-resolution RS technologies through images from
satellites and unmanned aerial vehicles (UAVs), sen-
sors connected to the Internet of Things (loT), wire-
less sensor networks (WSN), robotics and 3D printing
(Kalaitzoglou et al., 2021).

The use of PA is primarily driven by WSN, which
consists of interconnected wireless nodes that moni-
tor environmental conditions (Shafi et al,, 2019). These
nodes are equipped with components, such as trans-
mitters, microcontrollers, sensors, antennas, and elec-
tronic circuits to collect and transmit data to a gateway.
Nodes are categorized as either data sources or receiv-
ers/gateways, with receivers having more computing
power. In agriculture, different plants have varying
needs even within the same farmland, and sensors are
employed to monitor the changing behaviour of plant
parameters, including soil properties, plant charac-
teristics, weather conditions, fertilization options, and
water requirements. The most commonly used wireless
communication protocols in agricultural loT applica-
tions are Cellular, 6LoWPAN, ZigBee, RFID, Wi-Fi, and
LoRaWAN (Avsar & Mowla, 2022).

The combination of ML, HPC, and big data technol-
ogies opens up new opportunities for data-intensive
science in the interdisciplinary field of agrotechnolo-
gies. ML algorithms applied to sensor data transform
farm management systems into real-time Al-driven
programs that offer valuable recommendations to sup-
port farmers’ decision-making (Liakos et al., 2018). ML
approaches were successfully applied in various areas,
such as classifying plant diseases from plant images
using CNNs for different plant species and diseases,
detecting insects on leaves through object segmenta-
tion and deep learning techniques (Domingues et al.,
2022), and predicting soil moisture levels (Atanasov
et al,, 2023). In a global context, RS has been support-
ing decision-making in agriculture for over 45 years
(Ammoniaci et al., 2021; Domingues et al., 2022).

CONCLUSIONS

Remote sensing technologies offer valuable insights for
improving agricultural productivity and efficient water
resource management. Soil moisture sensors provide
accurate and consistent data, enabling objective ob-
servations of plant water status, although they have
limitations in capturing field-wide moisture variations.
Handheld remote sensing devices offer better tempo-
ral, spectral, and spatial resolution for on-site moni-
toring, but their effectiveness is limited for evaluating
larger areas compared to sensors on planes and satel-
lites. Proximal sensors require location-specific calibra-
tion and may pose data analysis challenges. Leaf phys-
iology methods provide objective assessments of crop
water stress but are time-consuming, destructive, and
not suitable for real-time monitoring. Modern imaging
techniques such as fluorescence, thermography, and
multispectral imaging enable fast and non-destructive




phenotyping for early detection of water stress. Satel-
lite-based remote sensing has significant potential but
can be constrained by spatial and temporal resolution
limitations and cloud cover. To overcome these chal-
lenges, unmanned aerial vehicles (UAVs) equipped with
remote sensing sensors offer a cost-effective alterna-
tive, providing high-resolution imagery with flexibil-
ity in flight and mission timing. UAVs surpass satellite

Atanasov

Prospects for future research in state-of-the-art
technologies for remote sensing of crop water status
and nutrients in agriculture include advancing sensor
technologies for improved accuracy and resolution,
integrating data from multiple sources for compre-
hensive analysis, and exploring the integration of re-
mote sensing with precision agriculture techniques for
site-specific management.

resolution and offer quick and repeatable deployment.
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Cyu4acHi TexHonorii AUCTaHUiMHOro 3oHAYBaHHS BOAHOIO PEXUMY
Ta NOXXUMBHUX PEYOBUH Y CiJibCbKOMY rocrnopapcTBi: ornaa,

CeeTocnaB ATaHacoB

AcnipaHT, Marictp KOMMOTEPHUX CUCTEM Ta TEXHOJIOTIN
YHiBepcuTeT Tpakis
6015, CryneHTcbke MicTeuko, M. Ctapa 3aropa, bonrapis
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AHoTauif. AKTYanbHiCTb AOCNILKEHHS 3yMOBMiEHA HEOOXiAHICTIO BMpPOBaKeHHS e(eKTUBHUX MEeTOoAiB Ta
IHCTPYMEHTIB MOHITOPUHIY BOAHWX PECYPCIB Ta BiACTEXEHHS PiBHS MOXMBHUX PEYOBUH Y IPYHTI A5 NOKPALLEHHS
CiNbCbKOroCnoAapcbKoro BMPOOGHULTBA Ta CTasoro BMKOPUCTAHHS MPUPOLHUX pPecypciB. MeTow OOCNIIKEHHS €
HafaHHS KOMMIEKCHOro OrnsiAy HOBITHIX TEXHONOTIM Ta METOLIB, WO BMKOPUCTOBYHOTLCS B [133 ANS TOYHOI OLiHKM
CTaHY BOOHMX PecypciB Ta PiBHSA MOXWMBHUX PEYOBMH Y CiNlbCbKOrOCNOAAPCbKMX KYNbTypax 3 MeTol MiABULLEHHS
NPOAYKTUBHOCTI Ta CTaNOCTi CiZIbCbKOro rocnoAapcTea. bynu BUBYEHi OCTaHHI LOCATHEHHS B METOAAX AUCTAHLiIMHOrO
30HAYBAHHS, AKi A03BONAOTb NPOBOAUTU TOYHUI MOHITOPUHT | OLIIHKY PIBHIB BOAM | MOXMBHMX PEYOBMH Yy NOCIiBaX,
WO MAa€E BWpillasbHe 3HAYeHHs A0S ONTUMI3aLii CiNbCbKOrocnoAapcbkmMx NpakTuK. JocnimxeHHa nitepatypu
NpoBOAMNOCA LWASXOM afanTauii METOAIB CUCTEMATUUYHMX OMSAIB | MeTa-aHanidy, SKMM HaJaAEeTbCs nepesara npu
CKNaAaHHi 3BITIB. Y LbOMY JOCNIAXKEHHI NpeacTaBneHo ornsg TexHonorii [133 3 0cobnnBUM akLLEHTOM Ha BU3HAYEHHI
BOJHOTO Ta MOXMBHOIO CTATyCy CilbCbKOrOCMOAAPCbKUX KYAbTYP Y CiibCbKOMY rocnoAapcTsi. Takox 6yno npoBeaeHo
peTeNbHMI OrNaa AOCNIAKEHb, NPUCBAYEHMX 3aCTOCYBaHHIO Ta TexHonoriam [33 y cinbCbkOMy rocnogapcrsi,
3 BMKOPWUCTAHHAM NiAXOAY «Bif, LUIMPOKOro A0 By3bkOro». [MpoaHanizoBaHi HAayKOBi AOCAIOXEHHS CBifyaTb Npo
HactynHe: [133 Ha BenukoMacwTabHoMmy piBHi, [133 Ha piBHi nons, 33 Ha piBHi Tenauup, [133 Ha piBHi pocanH Ta [133
Ha piBHi NIMCTKIB. TakoX NpeacTaBNeHi CyyacHi NnepenoBi TeXHONOriT. Pe3ynbtati Lboro AoCHimKEHHS MOXYTb OyTH
KOPUCHUMM AN TUX, XTO 3aMMAETbCA MUTAHHAMM CTANOMO CiNIbCbKOro rOCNOAAPCTBA, TaKMUX K AOCNIAHWKK, BUKNAdaui
Ta CTYAEHTU-NOoYaTKIBL

KntouoBi cnosa: ornsg; TouHe 3emM1epobCTBO; TOUHE 3POLLEHHS; pO3YMHe 3eMNepobCTBO; AUCTaHLiiHe 30HAYBAHHS;
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