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Abstract. The research relevance is predetermined by the need to introduce effective 
methods and tools for monitoring water resources and tracking soil nutrient levels to 
improve agricultural production and sustainable use of natural resources. The research 
aims to provide a comprehensive overview of the latest technologies and techniques 
used in RS for accurately assessing water status and nutrient levels in crops, aiming 
to enhance agricultural productivity and sustainability. The latest advancements in 
remote sensing techniques that enable precise monitoring and assessment of water 
levels and nutrient conditions in crops, crucial for optimizing agricultural practices, 
were studied. The literature research was conducted by adapting the Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis Methods. The current 
study provides an overview of RS technology, with a special focus on establishing 
crops’ water and nutrient status in agriculture. A thorough review of research focused 
on the applications and technologies of RS in agriculture, using a broad-to-narrow 
approach, was also conducted. The scientific studies analysed provide the following: 
RS crops on a large scale level, RS crops on a field level, RS crops on a greenhouse 
level, RS on a plant level and RS on a leaf level. Current cutting-edge technologies 
are also presented. The findings of this study could be beneficial to those involved in 
sustainable agriculture, such as researchers, academics, and aspiring students
 
Keywords: review; precision agriculture; precision irrigation; smart farming; remote 
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reflectance monitoring as a tool for water stress detec-
tion in greenhouses. They reviewed past research and 
recent advances regarding the sensors and approaches 
used for crop reflectance measurements and the indi-
ces used for crop water and nutrient status detection. 
A. Damm et al. (2018) conducted a review of remote 
sensing of plant-water relations. They reviewed suita-
ble remote sensing approaches to assess plant-water 
relations ranging from pure observational to combined 
observational-modelling approaches. They used a com-
bined energy balance and radiative transfer model to 
assess the explanatory power of pure observational 
approaches focusing on plant parameters to estimate 
plant-water relations, followed by an outline for a more 
effective use of remote sensing by their integration into 
soil-plant-atmosphere continuum (SPAC) models. It is 
possible to conclude that there are similar studies, but 
they are not categorized as in this publication – from 
the general to the particular, from the global scale to 
the leaf level.

The research aims to present a thorough examina-
tion of contemporary technologies and methodologies 
employed in remote sensing to precisely evaluate the 
water conditions and nutrient concentrations in crops. 
The ultimate goal is to improve agricultural efficiency 
and promote sustainable practices.

REMOTE SENSING CROPS  
ON LARGE SCALE LEVEL

Improved satellite data resolution from platforms like 
Landsat 8 and Sentinel-2 has opened up new possibili-
ties for monitoring crop conditions and mapping yields 
on a larger scale in agriculture. J. Clevers et al. (2017) 
utilized Sentinel-2 satellite images to estimate LAI, 
LCC, and CCC of potato crops using vegetation indices 
(VIs). Their study found that Sentinel-2 bands with a 
10 m spatial resolution were sufficient, eliminating the 
need for red-edge bands with a 20 m resolution. J. Miao 
et al. (2022) employed machine learning models to es-
timate leaf nutrient levels in mangrove forests using 
Sentinel-2 images. They compared XGBoost, RF, and 
LightGBM models and mapped nutrient levels for mul-
tiple seasons, highlighting the importance of monitor-
ing seasonal changes. A. Hama et al. (2022) introduced 
a low-cost LiDAR approach to estimate leaf water con-
tent (LWC) by measuring reflectance in the 905  nm 
band, which was found to be closely related to leaf 
structure. T. Dong et al. (2020) utilized Landsat 8 and 
Sentinel-2 data to estimate crop biomass in Manitoba, 
Canada, by parametrizing a crop growth model using 
remotely sensed LAI. Lastly, I. Sanches et al. (2014) used 
spectral feature analysis to detect plant stress in visi-
ble/near-infrared wavelengths, identifying a new index, 
PSDI, effective for detecting stress in hydrocarbon-im-
pacted plants based on field and airborne data. Table 1 
presents the above data in a summarized form:

INTRODUCTION
The timely and reliable information on crops’ water and 
nutrient status is of critical importance in the condi-
tions of modern precision agriculture and smart farms. 
By 2050, the world population is expected to increase 
to almost 10 billion people, and to feed them, existing 
food production must be increased by 59-98% accord-
ing to estimates by the Food and Agriculture Organi-
zation (FAO, 2023). It is also estimated that agriculture 
will use over 70% of the world’s freshwater reserves, 
with about half of it being lost or wasted. Up to 95% 
of the world’s food production depends on soil. As a 
result of unsustainable agricultural practices, overex-
ploitation of natural resources, and growing popula-
tions, one-third of the soils have already degraded, and 
experts estimate that soil erosion could lead to a 10% 
loss of crop yields by 2050. Soils are also full of life and 
contain approximately 25% of the world’s biodiversity. 
Globally, remote sensing (RS) has been supporting de-
cision-making in the field of agriculture for many years.

Several previously published literature reviews par-
tially examine the application of the RS in the crops’ 
water status and nutrients determined in agriculture. 
M. Weiss et al. (2020) conducted a meta-review of agro-
nomical variables and plant traits that can be estimat-
ed from remote sensing. They described different meth-
odological approaches to retrieve them, discussed how 
these variables are employed by different stakeholders 
for specific applications and concluded with an over-
view of caveats and future challenges. A. Konings et al. 
(2019) presented a review of microwave remote sens-
ing observations sensitive to plant water content. They 
introduced the principles behind microwave remote 
sensing observations to illustrate how they are sensi-
tive to plant water content and discussed how various 
sensor types can be leveraged for specific applications 
depending on the spatiotemporal resolution needed. 
M.  Bacco et al. (2019) provided a survey of the most 
recent research activities in the area of digitalization 
of agriculture, in the form of both research projects and 
scientific literature, to show the already achieved results, 
the current investigations, and the still open challenges, 
both technical and non-technical. G. Lassalle (2021) con-
ducted a meta-review about the advances achieved in 
monitoring natural and anthropogenic plant stressors by 
hyperspectral remote sensing over the last 50 years. He 
presented advances in hyperspectral monitoring of plant 
stress with a total of 466 peer-reviewed articles.

N. Katsoulas et al. (2016) conducted a review of 
crop reflectance monitoring as a tool for water stress 
detection in greenhouses. They presented challenges of 
detecting water status in greenhouses by remote sens-
ing, discussed sensors available for reflectance sens-
ing and applications, effects of environmental, canopy 
structure and other parameters and proposed possible 
solutions to mitigate the effects of those parameters. 
U. Ahmad et al. (2021) conducted a review on crop 
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Table 1. Examples of RS crops on large scale level

Source Sensor Crop Estimation Results

(Clevers 
et al., 2017)

Sentinel-2 satellite 
images Potato

LAI;
LCC;
CCC

At 10 m spatial resolution:
WDVI estimating LAI with R2=0.80, RMSEP=0.36;

CVI estimating LCC: R2=0.656; RMSEP=0.066 g·m−2);
CIgreen linear estimator of CCC: R2=0.818;  

RMSEP=0.29 g·m−2;
At 20 m spatial resolution:

TCARI/OSAVI linear estimator of LCC: R2=0.696,  
RMSEP=0.062 g·m−2

(Miao et al., 
2022) Sentinel-2 image Mangrove

Seasonal leaf 
nutrients:
carbon (C), 

nitrogen (N) and 
phosphorus (P)

XGBoost demonstrates high accuracy in estimating leaf C, 
N, and P levels with R2 values of 0.655, 0.799, and 0.829 
in spring, summer, and winter for leaf C, and R2 values of 
0.668, 0.743, and 0.704 for leaf N, and R2 values of 0.539, 

0.622, and 0.596 for leaf P

(Hama et al., 
2022)

LiDAR and 
hyperspectral data

leaves 
of sweet 
potatoes

LWC by LiDAR 
reflectance

Using LiDAR reflectance, the estimation of LWC (Liquid 
Water Content) achieves a high level of accuracy, with an R2 
value of 0.950, an RMSE (Root Mean Square Error) of 6.78%, 

and a MAPE (Mean Absolute Percentage Error) of 18.6%

(Dong et al., 
2020)

Landsat 8 and 
Sentinel-2 data

Anola, 
soybean, 

wheat, corn, 
oats and 

beans

Crop biomass 
using remotely 

sensed LAI

The accurate estimation of above-ground dry biomass 
for these six crops is achieved by assimilating LAI data 
obtained from satellite sources. The estimation yielded 
favourable results, with an R2 value of 0.81, an RMSE of 
135.4 g/m2, a normalized RMSE (nRMSE) of 37.9%, and a 

relative per cent difference (RPD) of 2.26

(Sanches 
et al., 2014)

ProSpecTIR-VS 
airborne imaging 
spectrometer for 
far-range field 

hyperspectral RS data

Forages 
brachiaria 
grass and 
perennial 
soybean

Plant stress in 
hydrocarbon-

contaminated soil, 
true leaf data

Among the leaf data, the PSDI and chlorophyll feature 
area demonstrated the highest proportion (67-70%) of 

plants exhibiting signs of stress

Source: developed by the author

REMOTE SENSING CROPS ON THE FIELD LEVEL
T. Silva et al. (2022) conducted on-site measurements 
of chlorophyll levels in grapevines to assess their ni-
trogen status. The study established a relationship be-
tween chlorophyll meter readings and actual leaf nitro-
gen contents. C. Araújo-Paredes et al. (2022) evaluated 
the accuracy of using an aerial sensor to estimate plant 
water status (PWS) through the Crop Water Stress Index 
(CWSI). They compared CWSI values derived from aerial 
thermographic and portable thermal cameras with 
measurements of stem water potential and demon-
strated the feasibility of estimating CWSI and generat-
ing spatial maps using aerial thermography. H. Zheng 
et al. (2018) assessed the performance of three sen-
sors on an unmanned aerial system (UAS) for estimat-
ing nitrogen status in rice. They employed various Vis 
to estimate leaf and plant nitrogen accumulation and 

evaluated their integration with field data. P. Rosso et al. 
(2022) compared ground-based LAI data with remote 
sensing information using VIs, machine learning, and 
radiative transfer models in barley experiments. They 
determined that machine learning algorithms and VIs 
performed well, indicating the potential of using satel-
lites and remotely piloted aircraft in precision agricul-
ture. Du et al. (2022) used a multi-rotor UAV equipped 
with image sensors to gather maize canopy data and 
developed models for LAI estimation using different 
algorithms. N. Katsoulas et al. (2016) utilized ML algo-
rithms to estimate NDVI in Arabica coffee cultivars us-
ing a passive RGB sensor in a UAV. They derived an NDVI 
equation based on RGB bands and found satisfactory 
agreement compared to in situ data, providing a simple 
method for evaluating vegetative vigour. Table 2 pre-
sents the above data in a summarized form:

Table 2. Examples of RS crops on field level

Source Sensor Crop Estimation Results

(Silva et al., 
2022)

Chlorophyll 
hand-held meter

Wine grape 
“Chardonnay” Chlorophyll

The generated models produced estimations for 
chlorophyll a, b, and total with calibration errors of 0.98, 
0.58, and 1.47μg ml-1 cm-2, respectively. For prediction, 

the errors are 1.03, 0.67, and 1.49 μg ml-1 cm-2. In 
terms of leaf nitrogen content, the calibration error is 

1.49 g kg-1, while the prediction error is 3.39 g kg-1
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Source Sensor Crop Estimation Results

(Araújo-
Paredes et al., 

2022)
Thermal Imagery Grape vine CWSI

Among the two models analysed, it is observed that for 
CWSITair, CWSIS demonstrated better evaluation of crop 
water stress compared to stem water potential, with an 
R2 value of 0.55. Additionally, CWSIS exhibited a strong 
correlation with the portable sensor, with an R2 value of 
0.58, indicating its potential for practical application in 

field measurements

(Zheng et al., 
2018)

RGB, colour-
infrared and 
multispectral 

cameras

Rice Nitrogen status

The findings indicated that the red edge (VIs) derived 
from multi-spectral (MS) images achieved the 

highest level of accuracy in estimating Leaf Nitrogen 
Accumulation (LNA) with R2 values ranging from 0.79 

to 0.81 and RMSE values of 1.43 to 1.45 g m−2. Similarly, 
for Plant Nitrogen Accumulation (PNA), the red edge VIs 

demonstrated strong performance with R2 values ranging 
from 0.81 to 0.84 and RMSE values of 2.27 to 2.38 g m−2

(Rosso et al., 
2022)

Sentinel-2, 
Landsat and 
Sen2-Agri

Barley LAI

The coefficients of determination obtained from all 
approaches ranged from approximately 0.7 to 0.9. When 

only four Sentinel-2 bands are utilized instead of the 
full set of 12, the top-performing ML algorithms achieve 

even higher levels of accuracy

(Du et al., 
2022)

CMOS sensors 
(RGB bands of 

spectral
and spatial 

information of 
image pixels

Maize LAI

There is a strong correlation between RGB-based VIs and 
LAI. The (RF model outperformed other models across 
the entire observation period as well as during specific 

growth stages. It exhibited the highest coefficients 
of determination (R2) ranging from 0.71 to 0.88 and 

the lowest RMSE values ranging from 0.12 to 0.25 on 
the test datasets. Following the RF model, the BPNN 

(Backpropagation Neural Network) model and LR models 
also showed good performance

(de Oliveira 
et al., 2022)

Passive RGB 
sensor on UAS

20 Arabica 
coffee cultivars Foliage level A high ratio between the foliage level and the NDVI can 

be observed (r=0.97, p-value < 0.01)

Source: developed by the author

REMOTE SENSING CROPS  
ON THE GREENHOUSE LEVEL

Q. Li et al. (2022) investigated the relationship between 
soil water content (SWC), drought stages of wheat, can-
opy temperature, and spectral response characteristics. 
They found that red-valley position (RVP) and red-edge 
position (REP) parameters showed significant shifts 
during certain drought stages of wheat, while vegeta-
tion water indexes effectively distinguished different 
levels of water stress across various growth stages. 
A. Bianchi et al. (2017) developed a water balance mod-
el based on the FAO-56 method to schedule irrigation 

for greenhouse spinach crops. They found that nitrogen 
treatment had minimal impact on crop development 
and irrigation requirements. C. Ru et al. (2020) exam-
ined the effectiveness of using the CWSI based on leaf 
temperature to assess the water status of grapevines. 
They determined the optimal time and conditions for 
observing CWSI values and concluded that CWSI was 
more effective than Tc-Ta (canopy temperature minus 
air temperature) in monitoring plant water stress, with 
stomatal conductance (gs) showing the strongest cor-
relation with CWSI. Table 3 presents the above data in 
a summarized form:

Table 3. Examples of RS crops on the greenhouse level

Source Sensor Crop Estimation Results

(Li et al., 
2022)

Ground hyper-
spectral RS Wheat

Water stress 
during tillering,

jointing and 
milk maturity.

The presence of water stress at various growth stages 
resulted in noticeable variations in spectral characteristics. 
Notably, there are significant differences in SWC and canopy 
temperature across different stages of wheat drought, with 

the jointing stage experiencing the most pronounced changes 
in canopy temperature 

(Bianchi 
et al., 
2017)

RGB images
Spinach 
(Spinacia 
oleracea)

Water 
requirements

The FAO-56-GH model demonstrated favourable performance 
during both the validation and calibration periods, as 

indicated by the evaluation metrics. In the validation period, 
the model exhibited a coefficient of determination (R2) of 

0.80, an RMSE of 0.41 mm day-1, and an NSE of 0.78. Similarly, 
during the calibration period, the model achieved an R2 of 

0.84, an RMSE of 0.21 mm day-1, and an NSE of 0.83

Table 2, Continued
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Source Sensor Crop Estimation Results

(Ru et al., 
2020)

Infrared 
thermometer Grapevines

Leaf 
temperature,

Water status – 
water stress

The correlation between the leaf-air temperature difference 
(Tc-Ta) and indicators of PWS (φs, gs, E) is statistically 

significant (P<0.05). Among these indicators, the relationship 
between gs, E, and Tc-Ta is particularly strong, with R2 values 

ranging from 0.530 to 0.604 and from 0.545 to 0.623, 
respectively. Additionally, there is a reliable linear correlation 

between the CWSI value and soil moisture at depths of 
0-40 cm, with statistical significance (P<0.05)

Source: developed by the author

REMOTE SENSING ON PLANT LEVEL
N. Chandel et al. (2022) developed a non-invasive 
method using computer vision and thermal-RGB imagery 
to detect water stress in winter wheat crops. Deep learn-
ing models and function-approximation models are uti-
lized to classify crops as stressed or non-stressed based 
on thermal-RGB images and various input parameters. 
P. López-García et al. (2022) conducted experiments to 
assess the impact of different water qualities and irri-
gation start times on crop growth. LR techniques and 
ANN models are trained using multispectral and RGB 

data to simulate water stress. J. Fernández-Novales et al. 
(2021) focused on assessing the water status of grape-
vines using leaf water potential and canopy temperature 
measurements. Spatial-temporal maps are generated to 
analyse variations in water status. S. Zhuang et al. (2017) 
developed a model for early identification of water stress 
in maize using image analysis. A two-stage detection 
model based on gradient-boosting decision trees is used 
to distinguish between adequate water supply and wa-
ter stress conditions in maize fields. Table 4 presents the 
above data in a summarized form.

Table 4. Examples of RS crops on the plant level

Source Sensor Crop Estimation Results

(Chandel 
et al., 2022)

RGB and 
thermal imagery 
plus computer 

vision

Winter 
wheat

Crop water 
stress

Different irrigation treatments significantly affect measurements of 
canopy temperature (Tc), relative water content (RWC), SMC, and RH 

concerning crop and soil responses. The 100% ETc treatment resulted 
in the lowest Tc (22.5±2°C), highest RWC (90%), and highest SMC 

(25.7±2.2%), while the 25% ETc treatment had the highest Tc (28±3°C), 
lowest RWC (74%), and lowest SMC (20.5±3.1%). ResNet50 performed 
the best among feature extraction models, achieving a discriminant 
accuracy of 96.9% with RGB inputs and 98.4% with thermal imagery 

inputs. Thermal imagery generally provided higher classification 
accuracy compared to RGB imagery. Among function approximation 

models, the DL-LSTM model achieved the highest discriminant accuracy 
of 96.7% and displayed lower errors in stress/non-stress classification

(López-
García et al., 

2022)

Multispectral 
and RGB UAV 

Imagery
Vineyard Water Status

Utilizing ML techniques, such as ANN models, is an efficient approach to 
analysing data obtained through UAV remote sensing for the estimation 

of Sψ. These models outperform LR models and using RGB bands and GCC 
as inputs leads to satisfactory outcomes. High-resolution RGB cameras 

are a cost-effective alternative to multispectral and thermal sensors, with 
promising results. To avoid soil effects and obtain precise GCC values, 

accurate vegetation segmentation is essential

(Fernández-
Novales 

et al., 2021)

Ground drone;
Thermal 
infrared 

radiometry and 
multispectral 

sensor

Grapevine PWS

The researchers employed Partial Least Squares (PLS) regression to 
develop calibration and prediction models. The findings revealed 

that the most effective prediction models for grapevine water status 
achieved a cross-validated determination coefficient (r2

cv) of 0.57 in the 
morning and 0.42 at midday. The RMSE of cross-validation (RMSEcv) was 
determined to be 0.191 MPa in the morning and 0.139 MPa at midday

(Zhuang 
et al., 2017)

RGB outdoor 
camera Maize

Early water 
stress 

detection

The accuracy of identifying three different water treatments is found to 
be 80.95%, while the accuracy of detecting water stress is 90.39%

Source: developed by the author

REMOTE SENSING ON LEAF LEVEL
In 2015, Dhillon introduced the “Leaf Monitor,” a contin-
uous leaf monitoring system specifically designed for 
measuring the PWS of almond and walnut trees. The 
Leaf Monitor system utilized a thermal infra-red sensor 
to measure leaf temperature and integrated additional 
sensors to monitor various environmental factors such 

as air temperature, relative humidity, photosynthetically 
active radiation (PAR), and wind speed. To optimize its 
performance, the system included a leaf holder, a so-
lar radiation diffuser dome, and a wind barrier. These 
systems were interconnected in a wireless mesh net-
work, allowing data collection and transmission every 
16 minutes through the internet.

Table 3, Continued
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In a subsequent study published in 2019 by the same 
research team led by Dhillon, they developed a method-
ology to predict PWS in almond and walnut trees using 
the continuous leaf monitoring system. The researchers 
collected data on leaf temperature and environmental 
conditions using the Leaf Monitor system. These data 
were then utilized to calculate a Modified CWSI, which 
served as an indicator of the plant’s water status. Before 
an irrigation event, MCWSI values were estimated and 
used to determine the appropriate irrigation amount for 
low-frequency variable rate irrigation (VRI). The irrigation 
amounts were based on the correlation between MCWSI 
and Drought Stress Water Potential (DSWP). By imple-
menting variable rate irrigation, the researchers achieved 
a significant average reduction of 39% in water consump-
tion compared to the fixed 100% evapotranspiration (ET) 
replacement irrigation method for all the trees. 

Analysing strawberry leaf colour can effectively 
help evaluate soil status and protect against excess 
environmental nutrients and financial losses in straw-
berry crops (Madhavi et al., 2022). The objective of this 
study was to create ML models, specifically multiple 
linear regression (MLR) and gradient boost regression 
(GBR), that can simulate variations in strawberry leaf 
colour. These colour changes are based on soil physic-
ochemical properties and plant age, using mean values 
of the RGB channels. Accurate measurements of soil 
physicochemical components were obtained from the 
largest and most diverse coloured leaves of the straw-
berry plants using a multifunctional soil sensor in the 
rooting zones. Additionally, 400 strawberry leaflets 
were sampled at different stages of vegetative and re-
productive growth, and individual leaves were captured 

using a digital imaging system. The RGB mean values of 
the coloured leaf images were extracted using image 
segmentation algorithms incorporated into image pro-
cessing techniques. Subsequently, MLR and GBR mod-
els were developed to predict the RGB mean values of 
the leaves based on the soil physicochemical measure-
ments and plant age. The GBR model demonstrated 
superior performance compared to the MLR model, 
achieving high-performance metrics. 

Several other studies have explored the use of 
advanced techniques for assessing PWS and health in 
various crops. F. Hahn et al. (2021) focused on man-
go trees and employed dendrometers and capacitors 
with Teflon clamps to measure LWC and examine the 
influence of water on mango production. H. Skoneczny 
et al. (2020) investigated the potential of non-invasive 
proximal hyperspectral remote sensing (RS) to dis-
tinguish between healthy, infected, and dry leaves of 
apple trees using spectral bands and indices. F. Rojo 
et al. (2016) proposed a new method for calculating 
CWSI and Modified CWSI using continuous leaf monitor 
data in almond orchards and vineyards to implement 
site-specific irrigation management. J. Rodriguez-Perez 
et al. (2018) compared ordinary least squares regression 
(OLSR) and functional linear regression (FLR) models 
to predict LWC using reflectance data and wavelengths 
in grapevines. T. Zhao et al. (2020) used hyperspectral 
imaging to evaluate water status in tomato leaves and 
computed vegetation indices (VIs) to assess LWC in dif-
ferent parts of the plants. These studies highlight the 
potential of advanced techniques in monitoring PWS 
and health for improved crop management. Table 5 pre-
sents the above data in a summarized form.

Table 5. Examples of RS crops on leaf level

Source Sensor Crop Estimation Results

(Dhillon, 
2015; 

Dhillon 
et al., 2019)

Thermal infrared sensor 
for continuously monitor 

the temperature of leaves, 
as well as the ambient 

temperature, relative humidity, 
photosynthetically active 

radiation (PAR), and wind speed

Almond 
and walnut PWS

In almond: MCWSI and DSWP linearly related, 
r2=0.67;

In walnuts, MCWSI and DSWP in quadratic 
relationship R2=0.75

(Madhavi 
et al., 2022)

RGB camera with a pixel 
resolution of 5472 × 3648 Strawberry

Leaf Colour Using 
RGB Mean Values

Based on Soil 
Physicochemical 
Parameters Using 

Machine
Learning Models

GBR model, utilizing RGB mean values throughout 
the growth stage, demonstrated a good fit with 

R2 and RMSE values of (R=0.77, 7.16, G=0.72, 7.37, 
and B=0.70, 5.68), respectively. On the other hand, 

the MLR model performed moderately, with R2 
and RMSE values of (R=0.67, 8.59, G=0.57, 9.12, and 
B=0.56, 6.81), when predicting RGB mean values 

consecutively in strawberry leaves

(Hahn et al., 
2021)

Inductive and Capacitive 
Sensors Mango Leaf Monitoring

The capacitance and Hall effect sensors can 
produce signals that can be used for scheduling 
irrigation based on predetermined thresholds.

(Skoneczny 
et al., 2020)

Non-invasive proximal 
hyperspectral RS Apple

Hyperspectral 
Analysis of 

Healthy, Infected 
and Dry Leaves

The 1450 nm band in the SWIR range effectively 
separates infected (I) and healthy (H) leaves, while 

the 1900 nm SWIR band distinguishes all three 
leaf types. Pearson correlation tests revealed 
that ARI, MSR, and QFI showed the strongest 
correlations with the progression of infection
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Source Sensor Crop Estimation Results

(Rojo et al., 
2016)

Continuous WSN leaf 
temperature monitoring 

system and soil and pressure 
sensors, latching solenoid 

valves

Almond 
orchards 

and 
Vineyards

PWS

In grapes: MCWSI and DSWP are linearly related, 
with R2=0.70;

In almonds, CWSI and DSWP strongly correlated 
with a second-order relationship and R2=0.78

(Rodriguez-
Perez et al., 

2018)
Hyperspectral Four grape 

varieties

LWC expressed as 
equivalent water 

thickness

The most accurate model is achieved by utilizing 
functional linear regression (FLR) within the 

spectral range centred around 1465 nm, resulting 
in a coefficient of determination (R2) of 0.70 and 
a percentage root mean squared error (%RMSE) 

of 8.485

(Zhao et al., 
2020) Portable hyperspectral camera Tomato Leaf Water Status

The most successful regression model for 
evaluating water content (WC) is obtained 

by utilizing TBI regression with DIFF data at 
1410 nm and 1520 nm wavelengths. Similarly, the 
most efficient regression model for determining 

moisture content (MC) is achieved through 
NDVI regression with RAW data at 1300 nm and 

1310 nm wavelengths. The models used for 
the MC assessment showed better performance 
compared to those used for the WC assessment

Source: developed by the author

CUTTING-EDGE TECHNOLOGIES
Industries are moving towards smart factories, and 
the agricultural sector should also embrace the con-
cept of smart farms. Unmanned ground vehicles (UGVs) 
play a vital role in the development of smart farms 
(Gonzalez-De-Santos et al., 2020). While there are 
similarities between smart factories and smart farms, 
specific research is needed to address the unique char-
acteristics of UGVs designed for outdoor agricultural 
tasks. Multi-drone systems consisting of smaller or 
medium-sized drones can perform tasks with greater 
accuracy, tolerance, and safety compared to larger ma-
chines. Autonomous drones, whether operating alone 
or in fleets, are essential for the precise application of 
herbicides and fertilizers. This approach reduces chem-
ical usage, resulting in benefits such as lower costs, 
improved operator safety, enhanced community health, 
and higher food quality with reduced toxicity.

The Research Centre for High Technology Green-
house Plant Production at Ehime University is working 
on a project called “Intelligent Greenhouse Systems,” 
in which the main concept is the “Speaking Plant” ap-
proach (Hiroshige, 2015). The SPA approach suggests 
that the best way to grow crops is by considering the 
plants’ physiological status. To implement SPA, a chlo-
rophyll fluorescence imaging drone is developed to 
measure the photosynthetic activity of tomato plants 
in greenhouses. This drone is designed to be low-cost, 
easy to use, and suitable for commercial tomato pro-
duction. The researchers also studied how storage tem-
perature affects tomato fruit colour using multiple re-
gression analysis to improve postharvest management.

This study (Kalaitzoglou et al., 2021) aims to inves-
tigate how blue light affects plant growth by measuring 
light absorption and photosynthesis in tomato plants. 
The experiment involved growing tomato plants in 

six different combinations of artificial solar and blue 
LED light, with varying levels of blue light. The results 
showed that increasing the blue light fraction led to a 
decrease in plant growth, which is related to a more 
compact plant morphology and lower light absorption. 
However, the blue light did not affect the plants’ maxi-
mum photosynthetic capacity. The study suggests that 
increasing blue light in a solar light environment can 
hinder plant growth, but further research is needed to 
confirm this in high-light growth environments typi-
cally used in tomato production.

A digital twin refers to a virtual representation of a 
farm that offers benefits such as increased productiv-
ity, improved efficiency, and reduced energy consump-
tion and losses. A. Nasirahmadi and O. Hensel (2022) 
presented a comprehensive overview of digital twin 
concepts and technologies in the field of agriculture. 
It covers various aspects including soil management, 
irrigation, robotics, farm machinery, and post-harvest 
processing. The review explores data recording, model-
ling, artificial intelligence, big data, simulation, analysis, 
prediction, and communication aspects of digital twin 
systems in agriculture. By continuously monitoring the 
farm in real time and updating the virtual model to re-
flect changes in the physical environment, digital twins 
provide valuable support to farmers. This technology 
represents the cutting-edge advancement in the digital 
transformation of the agricultural sector.

C. Pylianidis et al. (2021) used a combination of 
qualitative and quantitative methods to explore the 
advantages of digital twins in the agricultural domain. 
The study begins with a comprehensive literature re-
view focusing on digital twins in agriculture between 
2017 and 2020. By examining 28 use cases and compar-
ing them with examples from other fields, the research-
ers assess the extent of digital twin implementation in 

Table 5, Continued
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agriculture. They analysed reported benefits, service 
categories, and technology readiness levels to evaluate 
the adoption of digital twins in the agricultural sector. 
Furthermore, the study identifies specific characteris-
tics of digital twins that can be beneficial in agricul-
ture and proposes a roadmap for their implementation, 
considering increasing levels of complexity. Ultimately, 
the research underscores the distinctive attributes of 
digital twins that make them particularly valuable in 
the context of agriculture.

“Agri-Food 4.0” is a term used to describe the latest 
developments in the agriculture sector, which includes 
the integration of digital technologies and the Inter-
net of Things. Similar to the concept of “Industry 4.0”, 
Agri-Food 4.0 aims to optimize efficiency and produc-
tivity through the use of these technologies. While the 
agriculture sector has already incorporated electronic 
controls and data collection methods through sensors 
and drones, there is still a need to improve supply chain 
performance and decision-making processes. This sur-
vey (Lezoche et al., 2020) reviews over a hundred pa-
pers on new technologies and supply chain methods to 
understand the future of Agri-Food 4.0.

According to the United Nations Development Pro-
gramme (2021), global agriculture and food systems 
are under constant enormous pressure. It is estimated 
that by 2050 the world population will grow to almost 
10 billion people and to feed it, current food produc-
tion must be increased by 59-98% (Domingues et al., 
2022). It is also estimated that agriculture uses over 
70% of global freshwater supplies, with around half of 
this being lost and wasted. Globally, about one-third of 
the food produced is wasted or thrown away. Agri-food 
is at the heart of the United Nations 2030 Agenda and 
impacts all 17 Sustainable Development Goals.

In 2019, the twenty-six EU member states signed 
a declaration of cooperation to support the successful 
digitization of agriculture and rural areas in Europe. In 
it, they recognize the potential of digital technologies 
to help tackle important and pressing economic, social, 
climate and environmental challenges facing the EU’s 
agri-food sector and rural areas. In 2022, FAO calls for 
an end to soil degradation. Up to 95% of the world’s 
food production depends on soil. As a result of unsus-
tainable farming practices, overexploitation of natural 
resources and a growing population, one-third of soils 
have already been degraded, and experts estimate that 
soil erosion could lead to 10% crop loss by 2050. Soils 
are also full of life and contain approximately 25% of 
the world’s biodiversity (FAO, 2023).

The introduction of so-called precision agriculture 
(PA) and digital technologies in the field of agriculture 
are ways to optimize and improve the processes in it. 
New digital technologies make farming more acces-
sible, using a combination of different technologies 
working together to improve the precision of farming, 
including high-speed internet (5G) mobile phones, 

high-resolution RS technologies through images from 
satellites and unmanned aerial vehicles (UAVs), sen-
sors connected to the Internet of Things (IoT), wire-
less sensor networks (WSN), robotics and 3D printing 
(Kalaitzoglou et al., 2021).

The use of PA is primarily driven by WSN, which 
consists of interconnected wireless nodes that moni-
tor environmental conditions (Shafi et al., 2019). These 
nodes are equipped with components, such as trans-
mitters, microcontrollers, sensors, antennas, and elec-
tronic circuits to collect and transmit data to a gateway. 
Nodes are categorized as either data sources or receiv-
ers/gateways, with receivers having more computing 
power. In agriculture, different plants have varying 
needs even within the same farmland, and sensors are 
employed to monitor the changing behaviour of plant 
parameters, including soil properties, plant charac-
teristics, weather conditions, fertilization options, and 
water requirements. The most commonly used wireless 
communication protocols in agricultural IoT applica-
tions are Cellular, 6LoWPAN, ZigBee, RFID, Wi-Fi, and 
LoRaWAN (Avşar & Mowla, 2022).

The combination of ML, HPC, and big data technol-
ogies opens up new opportunities for data-intensive 
science in the interdisciplinary field of agrotechnolo-
gies. ML algorithms applied to sensor data transform 
farm management systems into real-time AI-driven 
programs that offer valuable recommendations to sup-
port farmers’ decision-making (Liakos et al., 2018). ML 
approaches were successfully applied in various areas, 
such as classifying plant diseases from plant images 
using CNNs for different plant species and diseases, 
detecting insects on leaves through object segmenta-
tion and deep learning techniques (Domingues et al., 
2022), and predicting soil moisture levels (Atanasov 
et al., 2023). In a global context, RS has been support-
ing decision-making in agriculture for over 45 years 
(Ammoniaci et al., 2021; Domingues et al., 2022).

CONCLUSIONS
Remote sensing technologies offer valuable insights for 
improving agricultural productivity and efficient water 
resource management. Soil moisture sensors provide 
accurate and consistent data, enabling objective ob-
servations of plant water status, although they have 
limitations in capturing field-wide moisture variations. 
Handheld remote sensing devices offer better tempo-
ral, spectral, and spatial resolution for on-site moni-
toring, but their effectiveness is limited for evaluating 
larger areas compared to sensors on planes and satel-
lites. Proximal sensors require location-specific calibra-
tion and may pose data analysis challenges. Leaf phys-
iology methods provide objective assessments of crop 
water stress but are time-consuming, destructive, and 
not suitable for real-time monitoring. Modern imaging 
techniques such as fluorescence, thermography, and 
multispectral imaging enable fast and non-destructive 
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phenotyping for early detection of water stress. Satel-
lite-based remote sensing has significant potential but 
can be constrained by spatial and temporal resolution 
limitations and cloud cover. To overcome these chal-
lenges, unmanned aerial vehicles (UAVs) equipped with 
remote sensing sensors offer a cost-effective alterna-
tive, providing high-resolution imagery with flexibil-
ity in flight and mission timing. UAVs surpass satellite 
resolution and offer quick and repeatable deployment. 
Combining multispectral and hyperspectral images en-
hances the comprehensive understanding of crop con-
ditions. By integrating these technologies, agriculture 
can benefit from improved practices and sustainable 
resource management.

Prospects for future research in state-of-the-art 
technologies for remote sensing of crop water status 
and nutrients in agriculture include advancing sensor 
technologies for improved accuracy and resolution, 
integrating data from multiple sources for compre-
hensive analysis, and exploring the integration of re-
mote sensing with precision agriculture techniques for 
site-specific management.
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Анотація. Актуальність дослідження зумовлена необхідністю впровадження ефективних методів та 
інструментів моніторингу водних ресурсів та відстеження рівня поживних речовин у ґрунті для покращення 
сільськогосподарського виробництва та сталого використання природних ресурсів. Метою дослідження є 
надання комплексного огляду новітніх технологій та методів, що використовуються в ДЗЗ для точної оцінки 
стану водних ресурсів та рівня поживних речовин у сільськогосподарських культурах з метою підвищення 
продуктивності та сталості сільського господарства. Були вивчені останні досягнення в методах дистанційного 
зондування, які дозволяють проводити точний моніторинг і оцінку рівнів води і поживних речовин у посівах, 
що має вирішальне значення для оптимізації сільськогосподарських практик. Дослідження літератури 
проводилося шляхом адаптації методів систематичних оглядів і мета-аналізу, яким надається перевага при 
складанні звітів. У цьому дослідженні представлено огляд технології ДЗЗ з особливим акцентом на визначенні 
водного та поживного статусу сільськогосподарських культур у сільському господарстві. Також було проведено 
ретельний огляд досліджень, присвячених застосуванню та технологіям ДЗЗ у сільському господарстві, 
з використанням підходу «від широкого до вузького». Проаналізовані наукові дослідження свідчать про 
наступне: ДЗЗ на великомасштабному рівні, ДЗЗ на рівні поля, ДЗЗ на рівні теплиць, ДЗЗ на рівні рослин та ДЗЗ 
на рівні листків. Також представлені сучасні передові технології. Результати цього дослідження можуть бути 
корисними для тих, хто займається питаннями сталого сільського господарства, таких як дослідники, викладачі 
та студенти-початківці
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