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Abstract. Plants can serve as biological sensors if their “readings” and the feedback they 
provide us through changes in the colour of their leaves can be correctly interpreted. 
The study aims to predict soil moisture and, as such, the need for irrigation, using 
nonlinear mathematical models, describing the relationship between RGB and HSL 
colour model components and soil moisture and temperature. Nonlinear mathematical 
models used in the study are based on piecewise linear regression with breakpoint 
and soil moisture prediction using colour components and soil temperature with 
a deviation of +-6%. A system for automated irrigation was created and its control 
program was made, the basic control law of which is based on non-linear piecewise 
linear models. The automated irrigation management system includes a remote 
crop monitoring subsystem and an irrigation management subsystem. The program 
processes the photo received from the camera and activates the actuators when 
watering is needed. Compared to manual data collection in the first part of the study, 
the program calculates the average RGB model values from images in the studied 
row of tomato plantations with an accuracy of over 99% for the R and G components 
and over 92% for the B component. The program also predicts soil moisture with 98% 
accuracy. The practical significance of the water-saving efforts of this study lies in the 
development of a program-controlled automated irrigation system that utilizes plants 
as biological sensors, employing nonlinear mathematical models based on leaf colour 
changes to accurately predict soil moisture

Keywords: biosensors; precision irrigation; RGB colourimetry; image processing; 
digitalization; bioinformatics

https://orcid.org/0000-0002-2658-1611


Automated remote sensing system for crops monitoring...

Scientific Horizons, 2023, Vol. 27, No. 1

128

provides information that the plant is well watered and 
that eliminates the drawbacks of the available sensors. 
This method must be sufficiently accurate to ensure op-
timal irrigation and water saving.

Modern studies (Atanasov, 2021) state that plants 
require irrigation when their leaves turn dark green and 
lighten as the soil moisture increases. However, the pres-
ent study does not include cases of infected or diseased 
plants with discoloured leaves, but only healthy ones. 
Atanasov (2021) also proves that the colour change is 
an early indicator of water stress, which can be detected 
within half an hour to an hour after irrigation depending 
on the height of the plant, or it can be monitored contin-
uously with an automated monitoring system proposed 
late in the present study. The same aforementioned study 
also demonstrated that young leaves (at the top of the 
plant) are more informative regarding the need for wa-
tering (they provide smaller errors when predicting soil 
moisture). Therefore, twice as many RGB and HSL colour 
samples were taken from them in the studies.

The study demonstrates the potential of the natu-
ral world. The study author suggests that plants can be-
come reliable living biosensors – essentially high-tech 
biogadgets. They employ leave colour as an indicator, 
and a smart and cost-effective solution for directly 
measuring soil moisture by analysing colour changes in 
tomato and other plants’ leaves grown in a greenhouse 
environment or outdoors can be created on this basis. 
As such, the study aims to build an interactive model to 
predict soil moisture levels and, as a result, provide op-
timal irrigation timing. This study also seeks to employ 
the natural traits of plants for further use. All of this 
can be achieved by investigating the type of functional 
dependence describing the relationship between the 
average value of the parameters of the RGB and HSL 
colour components (Ravg, Gavg, Bavg, Havg, Savg, Lavg) and the 
factors of soil moisture (θ) and soil temperature (T).

MATERIALS AND METHODS
Methodology of the experiment. The experimental ap-
proach involves conducting research in heated glass 
greenhouses situated in Plovdiv, Bulgaria, at coordi-
nates 42.18265, and 24.73989. These greenhouses 
meticulously control all environmental variables and 
ensure the well-being of plants by maintaining opti-
mal conditions. To provide winter heating, hot water is 
sourced from a nearby thermal power plant using steam 
heating. The greenhouse dimensions are approximately 
50 m by 35 m, with 15 columns of 3 m in length and 
each row spanning about 2 m in width. Tomatoes are 
cultivated year-round, yielding two harvests – one from 
January to July and another from August to December. 

The investigated indeterminate tomatoes are one 
variety – Panekra. They were planted at the end of July. 
The experiments were conducted in September – 24 
hours after irrigation and 24 hours before irrigation. 

INTRODUCTION
People knew when their crops required water or treat-
ment by their appearance (e.g., wilting, wrinkling) or 
their colour (lightening or darkening of their green col-
our) for centuries. Precision irrigation offers numerous 
benefits in modern agriculture. This targeted approach 
also improves crop yields and quality while minimizing 
environmental impact. Additionally, precision irrigation 
systems can be remotely controlled and monitored, al-
lowing farmers to make real-time adjustments based on 
weather conditions and soil moisture levels, ultimately 
enhancing overall farm productivity and sustainability.

Soil moisture refers to the amount of water present 
in the soil, typically measured as a percentage of the 
soil’s weight. Monitoring soil moisture is crucial from 
a precision irrigation perspective as it allows farmers 
to optimize their water usage. By determining the ex-
act moisture levels in the soil, farmers can apply irriga-
tion precisely, providing just the right amount of water 
needed. This not only conserves water resources but 
also ensures that crops receive adequate hydration for 
optimal growth and yield. Monitoring soil moisture lev-
els helps prevent over-irrigation, which wastes water 
and causes environmental issues, as well as under-ir-
rigation, which can harm crop health and productivity. 

However, irrigation efficiency and water resource 
preservation are often lower than expected (Zahoor 
et al., 2019; Laureti et al., 2021). It is estimated that agri-
culture uses over 70% of the world’s freshwater supplies, 
with about half of this being lost and wasted (United Na-
tions Development Programme, 2021). Furthermore, dur-
ing the irrigation process, most of the water is absorbed 
by the soil whereas plants get only a small portion. To-
matoes lose over 90% of absorbed water through tran-
spiration from their leaves, making them more vulnera-
ble to water stress than other parts of the plant, such as 
fruit (Zhao et al., 2020), therefore, they are more sensitive 
and a suitable indicator of water stress.

There are two widely recognized traditional ap-
proaches for monitoring irrigation: groundwater moni-
toring (Wood & Cherry, 2021) and plant water monitor-
ing (Simbeye et al., 2023). Various methods for assessing 
soil moisture are highlighted by several authors, includ-
ing the gravimetric approach (Reich et al., 2021), TDR 
dielectric methods (Gnatowski et al., 2018), FDR die-
lectric methods (Kang et al., 2019), and neutron probe. 
Measurement techniques for assessing plant water 
status encompass ZIM probes, dendrometers, infrared 
thermometry measurements, pressure chambers, in-
frared gas analysers, pulse methods, and porometers. 
E.  Serrano-Finetti et al. (2023) suggest employing 
non-invasive plant leaf water content monitoring using 
electrical impedance spectroscopy.

The study describes a different, indirect, intelli-
gent, quick approach based on physical observation of 
plants with the naked eye, used by farmers for a long 
time, which also has scientific potential. A method that 
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The study object is the leaf mass of tomato plants (So-
lanum lycopersicum) and the influence of microclimate 
parameters in the greenhouse (humidity and soil tem-
perature). Leaf mass was examined for four quality fac-
tors – young leaves (C1) before (A1) and after irrigation 

(A2), old leaves (C2) before and after irrigation. Young 
leaves (Fig. 1 – left and Fig. 2 – left) are the new, un-
derdeveloped leaves at the top of the plant. Old leaves 
(Fig. 1 – right and Fig. 2 – right) are large, fully devel-
oped leaves at the bottom of the plant.

Figure 1. Photos of young (left) and old leaves (right) after irrigation

Figure 2. Photos of young (left) and old leaves (right) before irrigation
Source: photos by the author

Throughout the measurements, wireless sensors 
were employed to monitor soil moisture and tempera-
ture, a handheld portable colourimeter (PCE-RGB2) was 
utilized for colour measurement, and a device (PCE-EM 
883) was employed to measure air humidity, tempera-
ture, and luminance. The calibration of the soil mois-
ture sensor for the specific greenhouse soil type, com-
pleted as outlined by J. Starr and I. Paltineanu (2002) 
for calibrating capacitive sensors, was conducted, as 
the greenhouse soil is of an alluvial-meadow nature.

As both factors θ and T are measurable, the study 
delved into the relationship between them and the av-
erage values of each component in the RGB and HSL 
colour models through multivariate regression analysis. 

The influence of qualitative factors, such as “before irri-
gation”, “after irrigation”, “young leaves”, and “old leaves”, 
were investigated using multivariate analysis of vari-
ance. The examination of normal distribution utilized the 
entire set of obtained experimental data (random varia-
bles), while in regression and dispersion analysis, the av-
eraged values of the RGB and HSL colour components for 
each plant (Ravg, Gavg, Bavg, Havg, Savg, Lavg) were employed.

Sample size. In the present study, 168 RGB and HSL 
tomato leaf colour samples were taken manually using 
a colourimeter before and 168 after irrigation. Regres-
sion and variance analysis were performed and models 
of the dependence between colour components and θ 
and T were obtained. The RGB readings for each plant 
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are rounded to the second digit, although the RGB com-
ponents have no fractional part. Soil moisture (θ) and 
soil temperature (Т) were measured repeatedly and av-
eraged, close to the plant and the root, in a layer of soil 
20-30 cm, which is also the root habitat.

Conducting the experiments. The experiment took 
place under diverse weather conditions. In conditions of 
clear and sunny weather, the greenhouse registered a hu-
midity level of 73% and a temperature of 25.7°C. Concur-
rently, outside the greenhouse, the humidity was 65.8%, 
and the temperature remained at 25.5°C, with an illumi-
nation range of 39-47 kLx within the greenhouse. Addi-
tionally, during cloudy and rainy weather, the greenhouse 
experienced increased humidity at 84%, a lower temper-
ature of 19.8°C, and illumination within the range of 5.2-
6.2 kLx. Outside the greenhouse, the humidity increased 
to 85.8%, and the temperature dropped to 16.8°C.

Based on the experience gained during the experi-
ments, the following experiment plan or the following 
data collection methodology was created and named 
“12-9-6-3”: twelve randomly selected plants (several 

from each of the three sections of the row) were stud-
ied – nine for mathematical model creation and three 
to test the model (before irrigation). Measurements 
used six-fold repeatability for young leaves and three-
fold repeatability for old leaves – six colour values were 
taken randomly from different leaves from the crown 
(top) of each plant examined and three colour values 
were randomly taken from the lowest their leaves. 

To facilitate the process, the plants are marked with 
an easily visible marking, e.g. red thread. Measured data 
is entered into a purpose-built field log. The experi-
ment was conducted at the end of a specially dedicated 
row. The experiment section is 15.53 m long with con-
trolled irrigation using two valves. Near the first valve, 
inside the greenhouse, as well as for the entire green-
house, the irrigation rate is 30 m3/acre. The irrigation 
rate between the first and second valve is 20 m3/acre 
and 10 m3/acre near the second valve to the concrete 
path. Fertilization is carried out by dissolving 20 kg of 
fertilizer and using the solution for drip irrigation with 
water – 20 m3/acre (Fig. 3):

Figure 3. Visualization of the studied plants and methodology “12-9-6-3” at the row in the greenhouse  
intended for this purpose 

Source: compiled by the author

Multivariate analysis of variance. The variance analy-
sis demonstrated that both “young/old leaves” and “be-
fore/after irrigation” factors have a significant influence 
on the colour component Ravg. The “young/old leaves” 
factor has a stronger influence. Only the “young/‌old 
leaves” factor has a proven influence on Gavg and Bavg 
colour components. The components Ravg, Gavg and Bavg 
have the largest values (lighter green colour when 
combined) in the older leaves after irrigation, which 
demonstrates that leaves darken when dry.

This study determines a model with functional 
dependence between the studied parameters, where 
the coefficient of determination R2 is >= 80%, as suit-
able, which means that it is capable of predicting soil 

moisture. That is why the non-linear estimation ap-
proach is used to find the relationship between the set 
of independent variables (θ and T) as predictors and 
the dependent variables (colour components) which 
vary over the independent variables.

Modeling with Piecewise linear regression with break-
point. This method works as follows: the model is di-
vided into two parts and the formula is solved using 
the Quasi-Newton nonlinear method, which is an it-
erative, iterative, nonlinear optimization method that 
greatly minimizes inconsistencies and errors in colour 
prediction, and which is used to minimizing the sum of 
squared errors (Araújo-Paredes et al., 2022). Breakpoints 
are fundamental when using piecewise regression, as 
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they are points in the range of X where the behaviour 
of Y changes, thus the name “breakpoint”. In some cases, 
the breakpoint can be known, but normally it is not. In 
such cases, there is a need for a method to determine it.

In the Quasi-Newton method, the process of con-
structing a model to predict leaf colour involves calcu-
lating the first-order derivative of the function at a giv-
en point to ascertain its slope. Subsequently, the second 
derivative indicates the rate at which the slope changes 
at that point and its direction. The Quasi-Newton meth-
od iteratively evaluates the function at various points 
during each step, computing both first and second-or-
der derivatives. These derivatives are crucial for deter-
mining the minimum of the loss function. The choice of 
methods to minimize the loss function depends on the 
objective, with the least squares method being the most 
prevalent. This method entails squaring the difference 
between predicted and observed values. The end goal 
is to minimize the disparity between the observed and 
predicted values (Araújo-Paredes et al., 2022).

RESULTS AND DISCUSSION
Investigating the distribution of colour components (ran-
dom variables). During the normal distribution check, 
almost all RGB component values studied were found 
to have a Gaussian distribution, except for B in young 
leaves after irrigation. A normal distribution in HSL 
for the following colour components was present – 
S and L in young leaves after irrigation, S and L in 
young leaves before irrigation and H, S and L in old 
leaves before irrigation. For those colour components 
that have a Gaussian distribution, prerequisites are 

available for moving on to the next steps: regression 
and variance analyses.

Multivariate analysis of variance. In the HSL colour 
model, both “young/old leaves” and “before/after irri-
gation” factors have a significant influence on the Havg 
component. The component Havg has the greatest value 
in young leaves before irrigation. None of the two fac-
tors “young/old leaves” and “before/after irrigation” had a 
proven influence on the Savg component. Only the factor 
“young/old leaves” has a proven influence on the Lavg com-
ponent. The components Havg and Savg have the greatest 
values in young leaves before irrigation. The component 
Lavg has the largest values in old leaves after irrigation.

Multivariate (bivariate) regression analysis. Regres-
sion analysis concluded that multiple linear regression 
and quadratic polynomial regression modelling were 
inappropriate (unsatisfactory coefficient of determina-
tion and non-significant models). The studied environ-
mental factors also have an inherent non-linear behav-
iour concerning leaf colour. In other words, the variation 
of the θ and T data does not follow any recognizable 
linear combination concerning leaf colour. Therefore, it 
is difficult to model a required dynamic relationship us-
ing conventional linear methods such as multiple line-
ar regression. A universal non-linear model is believed 
to best describe the colour components at different soil 
moistures and temperatures.

Modelling with Piecewise linear regression with 
breakpoint. The following coefficients of the empirical 
equation were obtained using this method. The general 
form of the model, calculated using the least squares 
method, is as follows:

y =  (b01 + b11x1+. . . + bm1xm)(y ≤ bn)(b02 + b12x1 +. . . + bm2xm)(y > bn),  � (1)

Alternatively, using the parameters Ravg, Gavg, Bavg, Havg, Savg, Lavg, θ and T, the model is as follows:

{Ravg, Gavg, Bavg, Havg, Savg, Lavg} = (b01 + b11θ + b21T) (for {Ravg, Gavg, Bavg, Havg, Savg, Lavg} ≤ breakpoint b0)
 Or (b02 + b12θ + b22T) (for {Ravg, Gavg, Bavg, Havg, Savg, Lavg} > breakpoint b0),

In this way, two separate linear regression equations 
are calculated – one for the y values that are less than or 
equal to the breakpoint (b0) and one for y values greater 
than the breakpoint. For the Ravg colour component in 
young leaves after irrigation, according to model (2), the 
coefficient of determination was 98.67%. It indicates that 
98.67% of the variation in Ravg is attributed to changes in 
the θ and T percentages. The remaining 1.33% is attribut-
able to factors not included in the model. The conclusions 

are similar for the other investigated colour components 
possessing a normal distribution – Gavg, Savg and Lavg. 

A very important conclusion was also established – 
the physical definition of the breaking point coincides 
with the arithmetic mean value of the given colour com-
ponent (in this case breakpoint = 119.13). The coefficients 
of the models concerning the remaining colour compo-
nents in young leaves after irrigation according to model 
(2) are summarized in Table 1:

Table 1. Coefficients and breakpoint for Ravg, Gavg, Savg and Lavg models in young leaves after irrigation

Model variable Coefficients Ravg Gavg Savg Lavg

Constant b01 868.17 2.35 -0.106 0.781
θ b11 -3.80 -12.44 -0.007 -0.003
Т b21 -31.49 20.90 0.024 -0.029

Constant b02 10.35 28.84 0.455 0.052

(2)
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Model variable Coefficients Ravg Gavg Savg Lavg

θ b12 -1.06 -1.24 -0.002 -0.0005
Т b22 6.66 6.99 -0.007 0.0036

breakpoint 119.13 140.09 0.235 0.111
R 0.99 0.99 0.88 0.99

Variations covered (%) 98.67% 98.03% 77.54% 99.47%
R2 0.99 0.98 0.78 0.99

Source: compiled by the author

This iterative approach is well-suited for scenar-
ios involving multiple independent variables and a 
dependent variable (colour component) with values 
both above and below the breakpoint. The residu-
al values are maintained at acceptably small levels 
through a nonlinear optimization method, ranging be-
tween -1.443 and 1.094. The predicted values closely 
align with the observed values. All data points from 
the experiments fall within or very near the narrow 
confidence interval (at a confidence level of γ = 0.95), 
and the regression line closely tracks the experimen-
tal points.

The residual values, distributed uniformly and with-
in acceptable limits, contribute to the model’s reliability. 
The high R2 value of 0.99 for Ravg in young leaves after 
irrigation amplifies a significant dependence of the col-
our component on the variables incorporated into the 
model. The points cluster closely around the straight 
line, suggesting a normal distribution of residuals. Sim-
ilar reasoning can be extended to all other considered 
colour components in old leaves after irrigation based 
on model (2). The coefficients of the models related to 
colour components in young leaves before irrigation 
are summarized in Table 2.

Table 2. Coefficients and breakpoint for Ravg, Gavg, Bavg, Savg and Lavg models, young leaves before irrigation

Model variable Coefficients Ravg Gavg Bavg Savg Lavg

Constant b01 104.72 137.12 57.18 0.357 0.112
θ b11 -2.12 -2.59 -0.59 -0.0023 -0.0016
Т b21 2.48 2.57 1.63 -0.0032 0.0014

Constant b02 -746.30 -1727.72 131.70 0.383 0.105
θ b12 9.26 19.02 0.25 0.006 -0.132
Т b22 33.59 74.11 -2.98 -0.0127 0.189

breakpoint 108.74 133.89 77.35 0.264 0.113
R 0.98 0.99 0.98 0.90 0.77
Variations explained (%) 96.98% 97.51% 95.14% 81.44% 59.22%

R2 0.97 0.98 0.95 0.81 0.59

Source: compiled by the author

Figure 4 also shows acceptably small residual 
values, with predicted values very close to the observed 
values:

Model is: (Young leaves before irrigation.sta)
Dep. Var. : R
Observed Predicted Residuals

1
2
3
4
5
6
7
8
9

100.83 99.91 0.92
115.50 115.50 -0.00
95.50 98.48 -2.98
108.50 109.56 -1.06
104.33 100.72 3.62
129.33 129.33 -0.00
107.33 106.53 0.80
117.00 117.00 0.00
100.33 101.64 -1.30  

Figure 4. Measured, and predicted values and residuals 
for Ravg in young leaves before irrigation

Source: compiled by the author

Figure 5 also demonstrates that all the experimen-
tal data points fall within or very close to the narrow 
confidence interval (at a confidence level of γ = 0.95) 

and that the regression line passes close to the exper-
imental points:

Predicted = 3,2895+0,9697*x; 0,95 Conf.Int.
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Figure 5. Scatter plot – predicted versus measured 
values of colour component Ravg at young leaves before 

irrigation, model (2)
Source: compiled by the author
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Figure 6 demonstrates that the residual values are 
within acceptable limits and with a uniform distribu-
tion. The high value of R2 = 0.99 for Ravg in young leaves 
after irrigation indicates that the colour component is 
significantly dependent on the variables included in 

the model. The points are located close to the straight 
line, i.e. it is possible to assume that the residuals have 
a normal distribution. The coefficients of the models 
regarding the colour components of old leaves before 
irrigation are summarized in Table 3:
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Figure 6. Normal probability plot of the residuals of model (2) for Ravg at young leaves before irrigation
Source: compiled by the author

Table 3. Coefficients and breakpoint for Ravg, Gavg, Bavg, Havg, Savg and Lavg models, old leaves before irrigation 

Model variable Coefficients Ravg Gavg Bavg Havg Savg Lavg

Constant b01 122.18 169.45 122.02 0.288 0.092 0.146
θ b11 0.53 1.16 0.42 0.0005 -0.005 0.0005
Т b21 0.02 -2.16 -1.25 -0.0033 0.009 -0.0016

Constant b02 -785.96 -512.82 -222.52 0.374 0.283 -0.385
θ b12 2.89 2.96 4.80 -0.0005 -0.0034 0.0064
Т b22 44.99 31.73 11.75 -0.0063 -0.0007 0.0192

breakpoint 139.15 158.89 112.37 0.239 0.172 0.133
R 0.93 0.95 0.97 0.88 0.96 0.95

Variations explained: 87.42% 91.13% 93.54% 77.10% 92.82% 89.96%
R2 0.87 0.91 0.94 0.77 0.93 0.90%

Source: compiled by the author

Verification of the operability of the developed 
model (2). Next, the performance of model (2) was tested, 
examining θ as the dependent variable and the colour 
component and soil temperature as the independent 
variable. The goal is for the farmer to determine the 
plant colour and know whether to irrigate (i.e. how wet it 

is – an indirect smart method). To this end, RGB and HSL 
values were taken from additional control plants before 
irrigation (Plants 10-12) during the experiment to verify 
the need for irrigation. With their help, the adequacy of 
the model (2) was tested. Analytically, model (2) trans-
forms concerning θ as follows, yielding model (3):

θ = ({Ravg, Gavg, Bavg, Savg, Lavg} – b01 – b21Т)/b11) (for {Ravg, Gavg, Bavg, Savg, Lavg} ≤ breakpoint b0)
 Or ({Ravg, Gavg, Bavg, Savg, Lavg} – b02 – b22Т)/ b12) (for {Ravg, Gavg, Bavg, Savg, Lavg} > breakpoint b0),

The results of model (3) testing are presented in Table 4: 

Table 4. Approbating the model (3) in young leaves before irrigation

Ravg Gavg Bavg Savg Lavg θmeasured T
Plant 10 108.83 131.67 81.50 0.236 0.104 22.00 19.03

(3)
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Ravg Gavg Bavg Savg Lavg θmeasured T
θcalculated 23.32 20.93 25.30 26.13 21.65

Predict. error +5.99% -4.85% +14.98% +18.88% +13.77%

Plant 11 118.67 146.33 81.67 0.284 0.111 23.21 18.96
θcalculated 24.63 24.66 25.13 23.63 17.22

Predict. error +6.14% +6.23% +8.28% +1.82% -9.20%

Plant 12 110.50 133.50 80.67 0.246 0.105 21.45 18.89

θcalculated 24.01 20.09 20.37 21.98 20.90
Predict. error +11.92% -6.36% -5.05% +2.42% +10.66%

Source: compiled by the author

During the approbating of the model (3) on older 
leaves before irrigation of large soil, moisture predic-
tion errors (between -66% and 45%) were obtained, 
therefore they were not demonstrated in this study. 
Therefore, the older leaves are not suitable for deter-
mining the need for irrigation. Young leaves before ir-
rigation are more informative because the error is ac-
ceptably small, confirming the result’s accuracy.

Description of the components of the automated ir-
rigation system. The model of the remote sensing sys-
tem for monitoring the tomato crop in the greenhouse 
and automatic control of the drip irrigation system 

(irrigation start and stop) consists of the following ele-
ments (Fig. 7):

1) Solar panel for autonomous power supply of the 
camera (40 W); 2) Autonomous 4G IP camera (dust and 
waterproof); 3) micro-Sim and microSD cards; 4) Protec-
tion of the camera lens against condensation (from the 
high humidity in the greenhouse); 5) Rodent proof cables; 
6) Accumulator (20 Ah); 7) Drip irrigation system; 8) Crops 
greenhouse-grown indeterminate tomato plants; 9) A 
remote computer executing the control function em-
bedded in a program written in Python; 10) A remote 
server where a snapshot is stored (e.g. every half hour).

Figure 7. A model of a remote sensing system for crop monitoring and automated irrigation
Source: compiled by the author

The camera can be set to automatically take a pic-
ture of the crop at a certain time interval (for example 
half an hour during the daylight hours) through the 
web interface of its software. This means that to save 
energy, the camera does not need to be on at all times, 
but only during the day every half an hour. The cropped 
photo can be stored in two ways. The first is locally, on 
the camera’s microSD card. The second: is by install-
ing a micro-SIM card in the designated slot, the cam-
era can be connected to the GSM cellular network and 
send the photos at a certain interval to a cloud storage 
service or a remote server. Connecting to the GSM cellu-
lar network is done by configuring the correct network 
settings: e.g. through the web interface of the camera, 
the name of the access point - APN (Access point name) 
must be set, among other appropriate network settings: 

username, password, IP address, subnet mask, gateway, 
and DNS (if the cellular network requires them). Setting 
the camera to send the pictures to a cloud service or a 
remote server is also done through the web interface 
of the camera. IP address or domain name of the server 
where the photos will be uploaded, upload interval, file 
format and image resolution are set. Finally, the photo 
upload schedule is enabled in the settings.

The image sent to a remote server is automatically 
retrieved remotely via a script on another computer, pro-
cessed by a Python-based program, and if the soil mois-
ture calculated from the colour of the leaves is below a 
certain threshold level, an actuator in the greenhouse is 
remotely activated to start and subsequently to stop the 
irrigation system. In the following Figure 8 is presented 
an example photo of the crop in the greenhouse, taken 

Table 4. Continued
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during the conduct of the experiments and the acquisi-
tion of the experimental data. Field experiments were 
conducted on row 2 of the image (the right one). If the 
camera has a wider field of view, more rows can be cov-
ered and processed simultaneously.

Figure 8. Photo obtained from the camera monitoring the 
crops in the greenhouse

Source: compiled by the author

Description of the image extraction and processing 
procedure and the program. Python is a powerful and 
versatile programming language that has become in-
creasingly popular among scientists and researchers in 
recent years. Python can be used to create compact and 
simple code whereas other programming languages re-
quire more resources and coding time.

Irrespective of the scientific domain, Python proves 
valuable for researchers in data analysis, visualization, 
and model development to advance their studies. The 
developed program focuses on image processing and 
soil moisture computation for two rows of tomatoes, 
subsequently regulating irrigation in one of the rows 
(specifically, row 2 on the right, where the field experi-
ments were conducted) based on the calculated values. 
The program operates through the following sequence: 
Initially, it imports essential modules or libraries, such 
as OpenCV (cv2) for image processing, urllib.request for 
fetching an image from a URL, numpy for array manipu-
lation, and serial for establishing serial communication 
with Arduino.

The process begins by retrieving an image from 
a URL and converting it into a numpy array using 

OpenCV’s cv2.imdecode() function. Subsequently, 
the program generates two binary masks for distinct re-
gions of interest in the image, specifically the areas cor-
responding to young leaf regions. The polygonal points 
defining these regions are manually set during pre-cali-
bration. The cv2.fillConvexPoly() function is called 
to delineate irregular quadrilaterals around each re-
gion (refer to Fig. 9). Finally, cv2.bitwise_and() is 
used to apply the masks to the image, resulting in a 
masked image that exclusively displays the two regions 
of interest (Fig. 9).

Figure 9. Software-masked image showing only the two 
young leaf regions

Source: compiled by the author using the author-developed 
program

Subsequently, a scaling factor is computed to ad-
just the size of the masked image, ensuring it is 1080 
pixels tall – the standard resolution height of a mod-
ern monitor. The resizing operation is executed through 
the cv2.resize() function. The program then show-
cases the resized masked image using cv2.imshow(), 
awaits a key press with cv2.waitKey(), and saves the 
masked image locally via cv2.imwrite(). Next, the 
program counts non-zero pixels in each mask (provided 
for informational purposes) using cv2.countNonZe-
ro() and determines the mean RGB colour values for 
each region using cv2.mean().

For the two rows, the program computes the soil 
moisture value based on their respective mean green 
colour values using the non-linear model (3), which 
forms the core of the control law. This model serves as a 
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regulator, influencing the actuator to initiate and cease 
irrigation. According to the assessments in Table  4, 
the Gavg colour component is chosen for soil moisture 
calculation and irrigation management. This colour 
component yields the smallest errors in soil moisture 
prediction (ranging from -6% to 6%, contingent on 
whether Gavg surpasses or falls below the breakpoint). 
Any prediction errors are rectified in the soil moisture 
calculation, along with an adjustment factor for the 
specific soil type (in this instance, the resulting soil 
moisture readings must be multiplied by a coefficient 
of 1.1). Ultimately, the program outputs the results of 
the soil moisture calculation and the irrigation decision 
for user inspection. Communication with the Arduino 
board is facilitated using the serial module, transmit-
ting a message to initiate or halt irrigation in the two 
monitored rows of plantations based on the computed 
soil moisture value. The program’s source code is avail-
able on GitHub in the “living-biosensors” repository at 
this link (n.d.).

Results after the program implementation (Program 
output)

Row 1:
 Mean color values (RGB): [118.79, 142.88, 93.75]
 Number of pixels: 2321756
 Average Soil Moisture: 25.03
 Soil moisture is sufficient in Row 1. Irrigation 

not started.
Row 2:
 Mean color values (RGB): [109.1, 133.79, 83.38]
 Number of pixels: 1926333
 Average Soil Moisture: 23.45
 Soil moisture is sufficient in Row 2. Irrigation 

not started.

The precision and accuracy of operation of the de-
scribed manual measurements with a calibrated col-
ourimeter meter were unambiguously confirmed by the 
calculations with an image processing program, which 
also confirms the correctness of the calculation meth-
ods used, work methods and the sufficiency of the sam-
ple used, as shown in the next comparative Table 5:

Table 5. Comparison of the obtained average RGB values and the soil moisture in the manual measurements and with 
the help of a program

Measurement method Number of measurements RGB averages Soil moisture

With hand-held measuring devices 54 [109, 133, 77] 23.85

From photo and program 1 926 333 pixels [109, 134, 83] 23.45

Source: compiled by the author

The average value of the colour components of 
young leaves before irrigation obtained from sever-
al dozen manual measurements with a calibrated col-
ourimeter and obtained from nearly 2 million pixels in 
row 2 is almost the same. Only the B component diverg-
es, but the accuracy is still above 92%, while R and G it is 
above 99%. Compared with the handheld measurements, 
the program predicts the soil moisture with 98% accura-
cy and activates the actuators if watering is needed. Py-
thon allows an automatic program execution, e.g. every 
half hour using task scheduling tools such as cron (on 
Unix-based systems) or Task Scheduler (on Windows) to 
schedule the script to run automatically at set intervals.

Remote access to the greenhouse irrigation system 
and its start and stop can be done using a GSM card 
for sending commands via SMS messages and a device 
that can receive and execute SMS commands (Arduino 
or other controllers with a GSM receiver). Arduino is a 
popular microcontroller platform that can be used to 
control various devices, including irrigation systems. 
There are various other controllers on the market such 
as Raspberry Pi, BeagleBone and other microcontrol-
ler boards that can be used to control greenhouse ir-
rigation systems. An in-depth state-of-the-art review 
(Atanasov, 2023) confirmed what was found in previous 
research (Atanasov, 2021), that there is no information 
that leaf colour has been used for predictive models 
of soil moisture, including in the model, as well as soil 

temperature usage as a dependent factor. Similar stud-
ies conducted demonstrate the following results:

Q. Li et al. (2022) investigated the interconnection 
between soil water content, different stages of wheat 
drought stress, canopy temperature, and spectral re-
sponse characteristics. C. Ru et al. (2020) explored the 
effectiveness of the Crop Water Stress Index, which 
relies on leaf temperature, as a tool for assessing the 
water status of grapevines. N. Chandel et al. (2022) in-
troduced a non-invasive approach utilizing computer 
vision and thermal-RGB imagery to detect water stress 
in winter wheat crops. Their method incorporated deep 
learning and function-approximation models to clas-
sify crops based on stress levels, utilizing thermal-RGB 
images and various input parameters. P. López-García 
et al. (2022) conducted experiments to evaluate the 
impact of different water qualities and initiation times 
for irrigation on crop growth. They employed Artificial 
Neural Network models trained on multispectral and 
RGB data to simulate and analyse water stress in crops. 
J. Fernández-Novales et al. (2021) focused on evaluat-
ing the water status of grapevines using measurements 
of leaf water potential and canopy temperature. They 
created spatial-temporal maps to examine changes in 
water status over time and across different locations. 

R. Dhillon et al. (2019) developed a methodology for 
forecasting Plant Water Stress (PWS) in almond and wal-
nut trees using a continuous leaf monitoring system. By 
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gathering data on leaf temperature and environmental 
factors with the Leaf Monitor system, they achieved a sig-
nificant average reduction of 39% in water usage com-
pared to the fixed 100% evapotranspiration replacement 
irrigation approach across all trees. Analysing the colour 
of strawberry leaves proves to be an effective method 
for assessing soil conditions and protecting strawberry 
crops from excessive environmental nutrients, which can 
lead to financial losses (Madhavi et al., 2022). Their pri-
mary goal was to develop machine learning models, spe-
cifically multiple linear regression (MLR) and gradient 
boost regression (GBR), capable of simulating variations 
in the colour of strawberry leaves. To achieve this, they 
gathered precise measurements of soil physicochemical 
properties in the rooting zones from the largest and most 
diverse coloured leaves of the strawberry plants, using a 
multifunctional soil sensor. Additionally, they collected 
400 strawberry leaflets at various stages of vegetative 
and reproductive growth, capturing individual leaves us-
ing a digital imaging system. Ultimately, their findings 
indicated that the GBR model outperformed the MLR 
model, achieving superior performance metrics. F. Hahn 
et al. (2021) focused on mango trees, utilizing dendrom-
eters and capacitors equipped with Teflon clamps to 
measure Leaf Water Content and investigate the impact 
of water availability on mango production.

H. Skoneczny et al. (2020) explored the potential 
of non-invasive proximal hyperspectral remote sensing 
to differentiate between the leaves of apple trees in 
three states: healthy, infected, and dry. This distinction 
was achieved by utilizing spectral bands and indices. 
J. Rodriguez-Perez et al. (2018) compared two regression 
models, ordinary least squares regression and functional 
linear regression, to predict Leaf Water Content in grape-
vines using reflectance data and specific wavelengths. 
T.  Zhao et al. (2020) employed hyperspectral imaging 
to assess the water status in tomato leaves, calculating 
vegetation indices to evaluate Leaf Water Content in var-
ious parts of the tomato plants. These studies underscore 
the promise of advanced techniques in monitoring Plant 
Water Stress and overall plant health, offering potential 
benefits for enhanced crop management.

CONCLUSIONS
A significant discovery emerged, highlighting the signif-
icance of the breakpoint’s physical meaning – it aligns 
with the arithmetic mean value of the specified colour 
component. The regression analysis produced two note-
worthy non-linear models, namely model (2) and the 
piecewise linear regression with breakpoint technique. 
These models demonstrate remarkable accuracy in pre-
dicting colour component values based on soil moisture 
and temperature, as evidenced by the high coefficient 
of determination (R2) achieved. The confirmation of a 
non-linear relationship between the studied dependent 
variable (colour component) and the two independent 
variables (θ and T) has been convincingly established.

Model (3) and the piecewise linear regression with 
breakpoint method prove to be effective in accurately 
predicting soil moisture values, particularly in young 
leaves, based on leaf colour and soil temperature. The 
low error rates in forecasting (+-6%) underscore the 
suitability of young leaves in determining the need for 
watering. This validates the methodology of sampling 
twice as many RGB colour samples from young leaves 
during the research compared to older leaves, which 
are found to be unsuitable for assessing watering needs 
due to less informative results.

Models (2) and (3) form the foundation for the de-
velopment of an automated crop monitoring system 
designed to assess watering requirements and control 
the irrigation system automatically. The precision and 
accuracy of manual measurements using a calibrated 
colourimeter are unequivocally confirmed through 
calculations with an image-processing program. This 
further affirms the accuracy of the employed calcula-
tion methods, work procedures, and the sufficiency of 
the sample size.

The average colour component values of young 
leaves before irrigation, derived from both manual 
measurements with a calibrated colourimeter and 
analysis of nearly 2 million pixels in the row where 
field experiments were conducted, align closely. While 
there is a slight divergence in the B component, the 
accuracy remains above 92%, with R and G components 
exceeding 99%. The Python-based program, with a 98% 
accuracy rate, predicts soil moisture and triggers actu-
ators if there is a need for watering, highlighting the 
effectiveness of the developed system.

The study results may not solve all subsequent en-
gineering and other problems, as the abovementioned 
methods do not work in the following situations: when 
due to diseases, the colour of the leaves of the plants 
changes; when the plants grow, the camera should 
change its tilt and/or move up automatically; evening 
time, when there is no natural light, logically, measure-
ments and calculations cannot be carried out. While the 
primary application of the study is in terrestrial agri-
culture, the principles and technologies developed and 
the ability to predict and manage soil moisture using 
plant-based sensors can be adopted in outer space ex-
ploration and farming. Automated irrigation systems, as 
described in the paper, could be adapted for use in con-
trolled environments on spacecraft or extraterrestrial 
bases, ensuring optimal conditions for plant growth.
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Автоматизована система дистанційного зондування для моніторингу посівів 
та управління зрошенням, що базується на зміні кольору листя та кусково-

лінійних регресійних моделях для прогнозування вмісту вологи в ґрунті
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Анотація. Рослини можуть слугувати біологічними сенсорами доти, доки ми можемо правильно інтерпретувати 
їхні «показання» та зворотній зв›язок, який вони надають нам через зміну кольору їхнього листя. Метою даного 
дослідження було прогнозування вологості ґрунту і, відповідно, потреби в зрошенні на основі створених 
нелінійних математичних моделей, що описують взаємозв’язок між компонентами колірних моделей RGB і 
HSL та вологістю і температурою ґрунту. Ці нелінійні математичні моделі базуються на кусково-лінійній 
регресії з точкою розриву і прогнозують вологість ґрунту за допомогою колірних компонентів і температури 
ґрунту з похибкою +-6 %. Створено систему автоматизованого поливу та написано програму керування нею, 
де основним законом керування є створені нелінійні кусково-лінійні моделі. Система автоматизованого 
управління зрошенням включає підсистему дистанційного моніторингу стану посівів та підсистему управління 
зрошенням. Програма обробляє фото, отримане з камери, і активує виконавчі механізми, якщо є потреба в 
поливі. У порівнянні з ручним збором даних у першій частині дослідження, програма розраховує на основі 
зображення середні значення RGB-моделі в досліджуваному ряду томатних плантацій з точністю понад 99 % 
для R- і G-компонентів і понад 92 % для B-компонента. Програма також прогнозує вологість ґрунту з точністю 
98 %. Практичне значення роботи з точки зору водозбереження полягає в розробці програмно-керованої 
автоматизованої системи зрошення, яка використовує рослини як біологічні сенсори, застосовуючи нелінійні 
математичні моделі, засновані на зміні кольору листя, для точного прогнозування вологості ґрунту

Ключові слова: біосенсори; точне зрошення; RGB-колориметрія; обробка зображень; оцифрування; 
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