ЗАРОЖДЕНИЕ ТЕОРЕТИЧЕСКИХ ОСНОВ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА СВАРКИ И НАПЛАВКИ ПРИ ВОССТАНОВЛЕНИИ ДЕТАЛЕЙ МАШИН

С.Н. Герук, к.т.н., доц.

Национальный научный центр «Институт механизации и электрификации сельского хозяйства» Национальной академии аграрных наук Украины (ННЦ «ИМЭСХ») п.г.т. Глеваха, Киевская обл., Украина

Е.Н. Сукманюк, к.и.н., ст. преподаватель Житомирский национальный агроэкологический университет *г. Житомир, Украина*

Введение

Восстановление изношенных деталей машин позволяет экономить высококачественные материалы, топливо, энергетические и трудовые ресурсы, являясь одним из самых весомых резервов экономии и бережливости.

Для восстановления работоспособности изношенных деталей требуется в 5–8 раз меньше технологических операций, чем для изготовления новых [1].

Сегодня восстановление деталей машин сваркой и наплавкой — одна из совершеннейших, наиболее продуктивных и экономичных среди используемых промышленностью энерго- и ресурсосберегающих технологий.

Довольно много как отечественных, так и зарубежных работ посвящено изучению разных сторон техники сварки и наплавки при восстановлении деталей. Но практически все эти работы касаются решения исключительно научных, инженерных и производственных проблем развития данного технического направления.

Исследование же развития и периодизация восстановления техники электродуговой сваркой и наплавкой в общественной жизни, а также связи ее с разными социальными явлениями практически осталось без внимания исследователей и могло бы обогатить интеллект инженерно-технических работников.

Основная задача данной работы — рассмотреть эволюцию научных взглядов на восстановление деталей машин сваркой и наплавкой.

Основная часть

История электрической сварки берет свое начало в XIX веке. В 1802 году русский ученый В.В. Петров открыл явление электрической дуги и предсказал возможность ее использования для расплавления металлов.

В своих работах, изданных в период с 1801 по 1804 годы (Санкт-Петербург), он описал возникновение электрической дуги и возможности ее применения для сварки металлов [2].

Американский физик Э. Томсон в 1867 г. во время одного из опытов перегрел концы медных проводов, и они сварились. На основе этого явления он подал заявку на патент о принципе сварки металлов методом сопротивления. Предложенные Томсоном идеи в тот период не нашли практического применения в производстве. В настоящее время этот способ массово используют во всех областях промышленности [3].

В 1881 г. русский инженер Н.Н. Бенардос разработал схему питания дуги от электрического генератора, включенного параллельно с батареей аккумуляторов через реостат. Он также предложил способ электродуговой сварки неплавким угольным электродом и конструкции простых сварочных автоматов [4].

Свои идеи по применению электросварки Н.Н. Бернадос изложил в 1883 г. в «Горнозаводском листке» в статье «Замечательные случаи применения электросварки по способу Бенардоса» [4, 5].

Впервые в мире Н.Н. Бенардос предложил способ сварки металлическим электродом на переменном токе, для чего создал электропаяльник с автоматическим регулятором длины дуги.

Стремясь автоматизировать процесс, Н.Н. Бенардос впервые разработал несколько систем автоматических устройств для сварки как металлическим, так и угольным электродом, которые являются прототипами сварочных автоматов и полуавтоматов.

В 1888 году русский инженер Н.Г. Славянов предложил использовать для сварки плавкий металлический электрод. Он создал мощный электрогенератор

с жесткой характеристикой и специальный полуавтомат для поддержания дуги между изделием и электродом [6].

Немецкий инженер Г. Церенер в 1889 г. впервые использовал для нагрева металла дугу косвенного действия. Главной особенностью этого способа являлось то, что основной металл не включается в электрическую цепь сварки, а дуга горит между двумя электродами. Сварочный металл нагревается дугой, пламя которой вытягивается в форме острого языка с помощью электромагнита [7].

В 1935—1940 гг. были осуществлены способы полуавтоматической дуговой сварки. Наибольшее распространение получили сварка наклоненным электродом по методу А.А. Сылина (предложенная в 1930 г.), сварка наклоненным электродом по методу Д.П. Лунегова, а также сварка лежащим электродом с эксцентричным пластом обмазки [8, с. 57].

В 1936 году сотрудник Института электросварки М.Г. Остапенко разработал способ дуговой сварки угольным электродом в потоке углекислого газа и в среде сгораемого бумажного шнура [9]. Благодаря такой защите стало возможным менять полярность и улучшать управление теплопроцессом.

В 1947–1948 гг. Г.З. Волошкевич разработал оригинальный способ сварки под флюсом с принудительным формированием шва. Этот способ оказался удобным для сварки вертикальных швов [10]. Его преимуществом стало соединение металлов неограниченной толшины, а также сварка и наплавка не только сталей, но и алюминия, меди, титана и их сплавов.

В 50-х годах значительное развитие получила наплавка изделий — способ не только для восстановления изношенных, но и для изготовления новых биметаллических изделий. За разработку и промышленное внедрение электродных сплавов для наплавки изношенных деталей в 1950 году Б.М. Конторову, Н.М. Жраковскому, И.И. Рафаловичу и Е.В. Соколову была присуждена Государственная премия.

Наибольшее распространение среди способов восстановления деталей на сельскохозяйственных ремонтных предприятиях получил созданный в 1952 г. И.Е. Ульманом в соавторстве с Г.П. Клековкиным в Челябинском государственном агроинженерном институте способ вибродуговой наплавки. Его использование имеет целый ряд преимуществ: высокая производительность (до $2,6~\kappa e^2/u$); незначительный нагрев детали (до $100~^{\circ}$ С); отсутствие существенных структурных изменений поверхности восстановительной детали (зоны термического влияния при наплавке незакаленных деталей – 0,6–1,5~m, закаленных – 1,8–4,0~m), что позволяет наплавлять детали маленького диаметра (от 8~m), не опасаясь коробления [11, 12].

Одной из ярких фигур в теоретических исследованиях и применении электродуговой сварки и наплавки деталей был украинский ученый Е.О. Патон. Как руководитель лаборатории, в 1929 году он поставил целью внедрение электросварки в народное хозяйство. Успехи небольшого коллектива в дальнейшем способствовали созданию на базе лаборатории и электросварочного комитета научно-исследовательского института. Так,

благодаря его усилиям, 4 января 1934 года был создан Институт электросварки [13].

В основу работы института положен принцип объединения научно-теоретических и инженерно-прикладных задач. По инициативе Е.О. Патона в Киевском политехническом институте была создана кафедра электросварки, а также оборудованы сварочные лаборатории.

В 1932 году впервые в мире К.К. Хренов [14, 15] создал и реализовал процесс электродуговой сварки и резки под водой. Он также внес весомый вклад в разработку способа сварки чугуна, газопрессовой сварки, а также дефектоскопии сварных соединений, разработал источники питания для дуговой и контактной сварки, керамические флюсы, работал над созданием и испытанием электродных покрытий.

Проведенные В.П. Вологдиными [16, 17], Е.О. Патоном [18] и Г.О. Николаевым [19] исследования по применению сварки и наплавки для восстановления деталей машин дали положительные результаты. В этот период были подтверждены основные преимущества разработанных ими методов соединения и восстановления деталей в сравнении с клепанием. Применение сварки и наплавки позволило получать 10–25 %-ную, а иногда и 50 %-ную экономию металла, благодаря более рациональному его использованию.

В 1960–1970-х годах Б.Е. Патоном, К.В. Багрянским и М.О. Ольшанским были исследованы отдельные факторы, которые влияют на качество ремонтной наплавки деталей сельскохозяйственных машин [20, 21]. Указанные факторы определяли условия протекания процесса сварки и накладывали некоторые как технологические, так и конструкционные ограничения.

Ими же была выведена расчетная формула химического состава металла шва:

$$R_{uu} = \gamma_{e\pi} R_{e\pi} + (1 - \gamma_{e\pi}) R_0 \pm \Delta R,$$

где $R_{\rm m}-$ расчетное содержимое элемента в металле шва, %;

 $R_{\text{ел}}$, R_0 — аналитическое содержимое элемента в электродной проволоке и основном металле, %;

 $\gamma_{\text{ел}}$ — процентное содержание электродного металла в металле шва;

 $\pm \Delta \, R$ — коэффициент усвоения, определяющий переход элемента из флюса в металл шва или наоборот.

Для изготовления легирующих флюсов-смесей широко использовалась технология, предложенная Н.И. Доценком (НИИАТ), когда во флюс добавляют феррохром и графит, которые позволяют получить необходимую твердость поверхности без дополнительной термообработки. С целью получения необходимого химического состава наплавленного металла С.О. Ткаченко в 1972 флюсов. обработке предложил использовать смесь исследовательских наплавок ИМ были получены уравнения регрессии, приведенные в таблице 1 [22].

Таблица 1 – Уравнения регрессии С.О. Ткаченко

Состав присадок к	Уравнение	Элемент,	Коэффициент	Электродный
AH-348A	регрессии	который	корреляции	провод
		рассчитывается		
16 % ПАК-1	y = 1,23 + 0,310x	Mn	0,83	Св-0,8
16 % ПАК-1	y = 0.48 + 0.200x	Si	0,77	Св-0,8
4 % Mn-6 + 14 %	y = 1,90 + 0,430x	Mn	0,79	Св-0,8
ПАК-1				
26 % Cu-75	y = 1,40 + 0,155x	Mn	0,76	Св-0,8
26 % Cu-75	y = 0.62 + 0.081x	Si	0,81	Св-0,8
26 % Xp-6	y = 0.21 + 0.156x	Cr	0,8	Св-0,8
16 % ПАК-1	y = 1,73 + 0,211x	Mn	0,83	Нп-80
16 % ПАК-1	y = 0.47 + 0.102x	Si	0,79	Нп-80
26 % Mn-6	y = 1,69 + 0,120x	Mn	0,74	Нп-80
26 % Mn-6	y = 0.61 + 0.043x	Si	0,74	Нп-80
4 % Mn-6+14 %	y = 2,21 + 0,202x	Mn	0,76	Нп-80
ПАК-1				
26 % Cu-75	y = 1,27 + 0,106x	Mn	0,70	Нп-80
26 % Cu-75	y = 0.75 + 0.086x	Si	0,67	Нп-80
26 % Xp-6	y = 0.18 + 0.134x	Cr	0,74	Нп-80
4 % Mn-6 + 14 %	y = 0.87 + 0.168x	Cr	0,72	Нп-80
ПАК-1				
26 % Вд-1	y = 0.12 + 0.084x	V	0,76	Нп-80
4 % ВД-1 + 14 %	y = 0.50 + 0.063x	V	0,76	Нп-80
ПАК-1				
030 % CaC ₂	y = 2,576 + 0,148x	Mn	0,76	Нп-80
030 % CaC ₂	y = 0.612 + 0.016x	Si	0,79	Нп-80

В 1957 году Н.С. Елистратовым проведены исследования и разработаны электроды для сварки чугуна типа СЧС с получением наплавленного металла в виде мягкой стали. Изготовлены электроды из проволоки Св-08 с обмазкой, в состав которой входят компоненты, которые легко размещаются в зоне дуги с выделением кислорода для окисления графита чугуна [23]. Коэффициент покрытия указанных электродов составлял 40 %, состав обмазки: 50 % гематита, 50 % мрамора [24].

В 1989 г. в Благовещенском сельскохозяйственном институте (БСХИ) на кафедре «Технология металлов» разработана технология восстановления чугунных коленчатых валов. В таблице 2 приведены химический состав, структура наплавленного металла, износостойкость поверхностного пласта при разных технологических вариантах восстановления [24].

Таблица 2 — Влияние разных способов восстановления на химический состав и износостойкость чугунных коленчатых валов

	Химический состав металлопокрытия						Коэффициент
	на шейках валов, %					износостой-	
Способ		па шунка	A DW10D, /0		Структура	Твер-	кости
восстановления					металло-	дость	
	C	Cr	Si	Mn	покрытия	HRC	$K = \frac{U_{s}}{U_{nos}}$
Вибродуговая	0,741,05	~	0,23 0,56	0,20,47	троосто-	4650	0,8
наплавка					мартенсит		
проволокой							
ПК-2							
(ТИИМСХ)	0.9.0.95	17 10	15 17	07.00		55 60	1.0
Электродуговое 2-шаровое	0,80,85	1,71,9	1,51,7	0,70,9	мартенсит	5560	1,0
наплавление							
проволокой							
Св-08А под							
легирующим							
флюсом							
(НИИАТ)							
Электродуговая	0,83	1,8	1,79	0,65	мартенсит	5560	1,0
наплавка					_		
проволокой							
Св-08А по							
оболочке под							
легирующим							
флюсом							
(НИИАТ)	0.7.00	10 10	0.00 0.00	1.02.2.0		<i>5</i> 6 6 0	1 7 1 0
Электродуговая наплавка	0,70,8	1,81,9	0,280,32	1,922,0	мартенсит	5660	1,51,8
проволокой							
Св-08А под							
смесью флюсов							
АНК-18 и							
АН-60 с подачей							
в сварочную							
ванну							
дополнительного							
присадочного							
провода							
(ЧИМЭСХ)	0.76 0.96		0.62 0.70	0.75 0.07		54 50	1.5.20
Электродуговая	0,760,86		0,630,78	U,73U,87	l *	5459	1,52,0
наплавка самозащитной					мартенсит		
проволокой							
3П-439 в потоке							
воздуха							
(НИИАТ)		_					
Электродуговая	1,40	100	0,33	3,36	аустенит	2331	2,83,0
наплавка					+		
проводом					троостит		
1,6Нп-80 под							
флюсом ФО-28							
(a.c. 353804)							
(БСХИ)							

Заключение

Основное развитие теоретических основ дуговой сварки и наплавки началось в конце 30-х годов XX столетия, когда возникла потребность создать новые автоматизированные технологические процессы, которые обеспечивали бы высокое качество соединений, высокопроизводительные методы сварки и наплавки.

Литература

- 1. Воловик, Е.Л. Справочник по восстановлению деталей / Е.Л. Воловик. М.: Колос, 1981. 351 с.
- 2. Академик В.В. Петров, 1761–1834. К истории физики и химии в России в начале XIX в.: сб. ст. и материалов / под. ред. С.И. Вавилова. М.; Л.: Изд-во АН СССР, 1940. 251 с.
- 3. Thomson, E. Electricwelding / E. Thomson // J. Franklin Inst. 1887. Vol. 123, № 737. P. 245–247.
- 4. Бенардос, Н.Н. Проект исправления «Царь-колокола» / Н.Н. Бенардос. СПб., 1890. 16 с.
- 5. Огиевецкий, А.С. Николай Николаевич Бенардос / А.С. Огиевецкий, Л.Л. Радунский. М.; Л.: Госэнергоиздат, 1952. 206 с.
- 6. Корниенко, А.Н. Н.Н. Бенардос автор способа дуговой сварки / А.Н. Корниенко // Сварочное производство. 1981. № 7. С. 4–5.
- 7. Шателен, М.А. Русские электротехники XIX века / М.А. Шателен. М.; Л.: Госэнергоиздат, 1955. 432 с.
- 8. Сварка в СССР: в 2 т. / под ред. В.А. Винокурова. М., 1981. Т. 1. **535** с.
- 9. Остапенко, Н.Г. Автоматическая сварка бортовых швов угольным электродом в атмосфере углекислого газа / Н.Г. Остапенко // Юбил. сб., посвященный 80-летию Е.О. Патона. К.: Изд-во АН УССР, 1951. С. 53–59.
- 10. Способ автоматической электродуговой сварки: а.с. 82915 СССР, МПК B23К25/00, B23К37/06. / Г.З. Волошкевич. № 389336; заявл. 27.11.1948; опубл. в БИОТЗ, 01.01.1950. № 2
- 11. Клековкин, Г.П. Вибродуговая наплавка в струе электролита новый метод восстановления изношенных деталей машин и механизмов / Г.П. Клековкин, И.Е. Ульман // Восстановление изношенных деталей автоматической вибродуговой наплавкой: [сб. статей] / Челябинское НТО машпрома. Челябинск: Челябинское обл. изд-во, 1956.
- 12. Клековкин, Г.П. Вибродуговая наплавка в струе охлаждающей жидкости новый метод восстановления изношенных деталей машин и механизмов / Г.П. Клековкин, И.Е. Ульман // Восстановление изношенных деталей автоматической вибродуговой наплавкой: [сб. статей]. Челябинск: Челябинское кн. изд-во, 1956. С. 8—63. Библиогр.: С. 62—63.
- 13. Николаев, Г.А. Элементы сварных конструкций / Г.А. Николаев. М.: Госстройиздат. 1933. 318 с.
- 14. Хренов, К.К. Наставление по подводной электрической сварке и резке металлов / К.К. Хренов. М.; Л.: Военмориздат, 1943. 160 с.
- 15. Хренов, К.К. Подводная электрическая сварка и резка металлов / К.К. Хренов. М.: Воениздат, 1946. 160 с.
- 16. Вологдин, В.П. Поверхностная индукционная закалка / В.П. Вологдин. М., 1947. 54 с.
- 17. Вологдин, В.П. Выпрямители / В.П. Вологдин. 2-е изд. М.; Л., 1936. 232 с.
- 18. Патон, Е.О. Избранные труды: в 3 т. / Е.О. Патон. К.: Наук. думка. Т. 1: Исследования работ пролетных строений мостов. 1959. 580 с.; Т.2: Сварные конструкции. 1960. 329 с.; Т.3: Сварка под флюсом. 1961. 558 с.
- 19. Николаев, Г.А. Сварные конструкции / Г.А. Николаев. М., 1963. 219 с.

- 20. Сварка в машиностроении / под ред. Н.А. Ольшанского. М.: Машиностроение, 1978. Т. 1. 504 с.
- 21. Технология электрической сварки плавлением / под ред. Б.Е. Патона. М.; К.: Машгиз; ГОНТИ, 1962. 663 с.
- 22. О переходе легирующих элементов при восстановлении деталей сельскохозяйственной техники / Д.Г. Вадивасов и [др.]. Благовещенск, 1971. 25 с.
- 23. Елистратов, Н.С. Металлургические основы сварки чугуна / Н.С. Елистратов. М.: Машгиз, 1957. 65 с.
- 24. Сварка и резка чугуна / В.Г. Иванов [и др.]. М.: Машгиз, 1977. 65 с.