УДК 004.738.5:338.46

ВАЛИДАЦИЯ СИНЕРГЕТИЧЕСКОГО УПРАВЛЕНИЯ ВЗАИМОДЕЙСТВИЕМ АКТОРОВ В СОЦИАЛЬНЫХ ИНТЕРНЕТ-СЕРВИСАХ

Катерина Молодецкая

Житомирский национальный агроэкологический университет

Аннотация

Популярность социальных интернет-сервисов, простота и оперативность обмена контентом создают предпосылки к манипулированию злоумышленниками индивидуальным и массовым сознанием акторов виртуальных сообществ. Как следствие, это порождает угрозы информационной безопасности личности, общества, государства. Минимизация негативных последствий таких действий может быть достигнута путем обеспечения управляемости процессов с использованием концепции синергетического управления взаимодействием акторов в социальных интернет-сервисах. В статье представлены результаты валидации и исследования моделей, построенных на основе разработанной концепции. Показано, что синтезированное синергетическое управление адекватно отображает особенности взаимодействия акторов в виртуальных сообществах социальных интернет сервисов.

Ключевые слова: валидация, синергетическое управление, акторы, социальные интернет-сервисы, информационная безопасность.

Постановка проблемы

Современные социальные интернет-сервисы (СИС) являются новейшей виртуальной информационной платформой, которая обеспечивает онлайн и офлайн коммуникацию между участниками ее виртуальных сообществ [1–6]. Популярность СИС, кроме всех их позитивных коммуникационных возможностей, порождает перечень потенциальных угроз информационной безопасности личности, общества, государства. Особенно опасными представляются угрозы, которые направлены злоумышленниками на манипулирование индивидуальным и массовым сознанием. При этом явление социальной коммуникации, возникающие вследствие взаимодействия акторов в виртуальных сообществах СИС, характеризуются высокой степенью неопределенности, а соответственно и непрогнозируемостью процессов, возникающих в результате коммуникации [3, 7–10].

С целью обеспечения управляемости такими процессами целесообразно реализовать концепцию синергетического управления взаимодействием акторов в СИС [7, 11]. Внедрение упомянутой концепции позволяет искусственно, без ведома участников виртуального сообщества СИС поддерживать заданный уровень заинтересованности представляющим интерес. В основу поддержки контентом, заданного уровня заинтересованности согласно с [5, 7, 11] положено явление синергетического эффекта, возникающего вследствие запуска процессов самоорганизации акторов Синергетическое управление взаимодействием акторов реализует заведомо контролируемый переход к заданному состоянию информационной безопасности виртуального сообщества [7, 12–14].

Известно [7, 11, 15], что базовым требованием к моделированию процессов взаимодействия акторов в СИС на основе исследуемой концепции является отображение в моделях динамических свойств спроса на контент, представляющий интерес не только в реальном, но и в ускоренном времени. При этом исследование таких моделей является актуальной научно-прикладной задачей, требующей решения [16–20].

Анализ последних исследований и публикаций

В [21, 22] показано, что качество процессов перехода системы от хаоса к управляемому состоянию зависит от используемого метода. Известно, что программное управление и синтез обратной связи по состоянию или выходу приводят к изменению динамики в целом. Как следствие происходят непредсказуемые изменения в моделируемой системе. В работах [11, 21] предложено использовать для подавления хаотической динамики системы процессы самоорганизации. В публикациях [7, 12, 13] авторским коллективом синтезировано синергетическое управление спросом акторов на контент, представляющий интерес, однако не приведены результаты валидации предложенных моделей, а это в свою очередь представляет значительный интерес с точки зрения их дальнейшего практического использования.

Целью статьи является валидация и исследование предложенных в [7, 12, 13] моделей с целью проверки их достоверности и для дальнейшего практического использования.

Основной материал

Пусть в соответствии с концепцией [7] взаимодействие акторов в СИС в формализованном виде описывается системой нелинейных дифференциальных уравнений общего вида:

$$\begin{cases}
\frac{dx_{i}(t)}{dt} = f_{i}(x_{1}(t),...,x_{\lambda}(t), y_{\lambda+1}(t),..., y_{\mu}(t)); \\
\frac{dy_{j}(t)}{dt} = f_{j}(x_{1}(t),...,x_{\lambda}(t), y_{\lambda+1}(t),..., y_{\mu}(t), u_{1}(t),..., u_{\gamma}(t)), \\
x_{i}(t_{0}) = x_{i}^{0}, y_{i}(t_{0}) = y_{i}^{0};
\end{cases} \tag{1}$$

где $x_i(t), y_j(t)$ — показатели взаимодействия акторов в СИС, $i=1,2,\dots,\lambda$, $j=\lambda+1,\lambda+2,\dots,\mu$;

 $u_{\gamma}(t)$ — синергетическое управление взаимодействием акторов в СИС, реализуемое обратной связью, $\gamma = 1, 2, ...$;

 $x_i(t_0) = x_i^0$, $y_i(t_0) = y_i^0$ – начальные условия.

Модель (1) в частном случае [12] может быть приведена к виду:

$$\begin{cases} \frac{dx(t)}{dt} = ax - xy - bx^{2}; \\ \frac{dy(t)}{dt} = -cy + xy, \end{cases}$$
 (2)

где x(t) – процесс, описывающий спрос акторов СИС на контент, представляющий интерес для исследуемого виртуального сообщества;

y(t) — процесс, описывающий предложение по предоставлению контента, представляющего интерес;

a – показатель изменения скорости спроса акторов СИС на контент, представляющий интерес;

b — показатель изменения состояния процесса конкуренции акторов в СИС на публикацию контента аналогичного по сущности и содержанию;

c — показатель изменения скорости предложения по предоставлению акторам СИС контента, представляющего интерес.

Входные данные для моделей [7, 12, 13]

Выберем для модели (1) в качестве атрактора [14] параметр порядка $\psi_{vz}(x,y)$, $z=\overline{1,2}$, определяющий динамику процессов взаимодействия акторов в СИС (2), зависящий от поставленного задания синергетического управления и приобретает вид, представленный в табл. 1.

Модели исследуемого параметра порядка

Таблица 1

Модель параметра порядка, $\psi_{vz}(x, y)$, $z = \overline{1,2}$	Параметры модели					
$\psi_{\nu 1}(x, y) = \varphi_1 x + \varphi_2 \left(1 - \frac{y}{N}\right)$	φ_1 , φ_2 – коэффициенты регуляризации спроса и предложения					
	контента, представляющего интерес у акторов взаимодействия в СИС;					
	 N – уровень предложения по предоставлению контента, представляющего интерес с учетом его ценности. 					
	ξ_1 , ξ_2 – коэффициенты регуляризации спроса акторов СИС на					
$\psi_{\nu 2}(x, y) = y - \xi_1 x - \xi_2 x^2$	публикацию контента, который распространяет некоторую идею,					
	но отличается ее изложением.					

На основе определенных параметров порядка $\psi_{vz}(x,y)$, $z=\overline{1,2}$ (табл. 1) и формализированной модели взаимодействия общего (1) или частного вида (2) синтезируем синергетическое управление $u_{\gamma z}(x,y)$ спросом акторов СИС на контент и определим координаты точек всплеска синергетического эффекта (x_{vz},y_{vz}) . В [7, 12, 13] показано, что такими точками всплеска являются представлены в табл. 2.

Таблица 2 Синтезированное синергетическое управление

Модель параметра порядка	Синергетическое управление, $u_{\gamma z}(x,y)$	Точка всплеска синергетического эффекта, (x_{vz}, y_{vz})
$\psi_{v1}(x,y)$ (см. табл. 1) [13]	$u_{y1}(x,y) = \frac{\varphi_1}{\varphi_2} N(ax - xy - bx^2) + \frac{1}{\varphi_2 T_v} N \psi_{v1}(x,y) + cy - xy$	$x_{\nu 1} = \frac{a - N}{\frac{\varphi_1}{\varphi_2} N + b}; \ y_{\nu 1} = \frac{\varphi_1}{\varphi_2} N \frac{a - N}{\frac{\varphi_1}{\varphi_2} N + b} + N.$
\$\psi_{v2}(x,y)\$(см. табл. 1)[12]	$u_{y2}(x,y) = cy - xy + (ax - xy - bx^{2})(\xi_{1} + 2\xi_{2}x) - \frac{1}{T_{\nu}}(y - \xi_{1}x - \xi_{2}x^{2})$	$x_{v2} = -\frac{1}{2\xi_2} \left(b + \xi_1 - \sqrt{b^2 + 2b\xi_1 + \xi_1^2 + 4a\xi_2} \right);$ $y_{v2} = \xi_1 x_{v2} + \xi_2 x_{v2}^2.$

Допущения и ограничения

Для обеспечения асимптотической устойчивости синтезированной системы, которая реализует управляемый переход виртуального сообщества акторов в СИС из состояния хаоса в заданное управляемое состояние, необходимо выполнение некоторых условий. Эти условия найдены в результате исследования на основе метода функций Ляпунова [23]

дифференциального уравнения (табл. 3), вдоль интегральной кривой которого двигается изображающая точка управляемой системы (1).

Таблица 3 Дифференциальное уравнение для траектории движения изображающей точки системы

Синергетическое управление, $u_{\gamma z}(x,y)$	Дифференциальное уравнение			
$u_{\gamma 1}(x,y)$	$\frac{dx_{\psi_{v1}}}{dt} = x_{\psi_{v1}} \left(a - N - x_{\psi_{v1}} \left(\frac{\varphi_1}{\varphi_2} + b \right) \right)$			
$u_{\gamma 2}(x,y)$	$\frac{dx_{\psi_{v2}}}{dt} = x_{\psi_{v2}} \left(a - x_{\psi_{v2}} \left(\xi_1 + \xi_2 x_{\psi_{v2}} \right) - b x_{\psi_{v2}} \right)$			

Ограничения, которые накладываются на синтезированное управление, приведены в табл. 4.

Таблица 4 Ограничения на синтезированное синергетическое управление

Синергетическое управление, $u_{\gamma z}(x,y)$	Ограничения
$u_{\gamma 1}(x,y)$	$a > N, \frac{\varphi_1}{\varphi_2} + b > 0$
$u_{\gamma 2}(x,y)$	$a > 0, b > 0, \xi_1 > 0, \xi_2 > 0, \xi_1 + \xi_2 x_{\psi 2} > b$

Рассмотрим моделируемые процессы взаимодействия акторов СИС в формализированном виде (2) на протяжении времени $T_{\rm o}$.

Валидация моделей

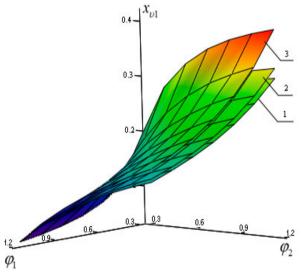
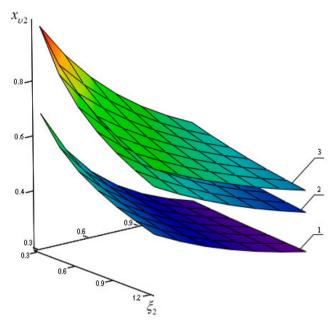

Исследование обоснованности и соответствия моделей выдвинутой в [7] гипотезе (см. табл. 1–3) проведено в заданном диапазоне изменения параметров начальной системы (2) и качественным анализом полученных результатов в соответствии с общепринятой методологией исследования моделей [16–20]. Для модельного примера (2) приведены результаты вычислительного эксперимента по регуляризации спроса акторов на контент СИС для трех наборов значений параметров синтезированной системы управления (табл. 5).

Таблица 5 Результаты валидации моделей синергетического управления спросом акторов СИС


Точка всплеска синергетического эффекта (x_{vz}, y_{vz})										
Коэффициенты регуляризации		x_{v1}	y_{v1}	Коэффициенты регуляризации		x_{v2}	y_{v2}			
1		2	3	4			5	6		
при $a = 0,4$, $b = 0,25$, $N = 0,3$				при $a = 0,4$, $b = 0,25$						
		0,2	0,057	0,386	$\xi_1 = 1$	$=1$ $\xi_2 =$	0,2	0,305	0,324	
		0,4	0,100	0,375			0,4	0,293	0,327	
$\varphi_1 = 1$	$\varphi_2 =$	0,6	0,133	0,367			0,6	0,282	0,330	
		0,8	0,160	0,360				0,8	0,272	0,332
		1	0,182	0,355			1	0,264	0,334	
<i>∞</i> −1	$\varphi_{\rm l} =$	0,2	0,323	0,319	$\xi_2 = 1$	$\xi_2 = 1$	$\xi_2 = 1$ $\xi_1 =$	0,2	0,446	0,288
$\varphi_2 = 1$		0,4	0,270	0,332				0,4	0,386	0,303

	0 (0.000	0.242			0.6	0.007	0.016	
			· · · · · · · · · · · · · · · · · · ·					0,316	
	0,8	0,204	0,349			0,8	0,297	0,326	
при с	a=0,8,	b = 0,4 , $N =$	0,6		П	ри $a=0$,	8, b = 0,4		
	0,2	0,059	0,776		$\xi_2 =$	0,2	0,531	0,588	
	0,4	0,105	0,758			0,4	0,500	0,600	
$\varphi_2 =$	0,6	0,143	0,743	$\xi_1 = 1$		0,6	0,475	0,610	
	0,8	0,174	0,730			0,8	0,454	0,618	
	1	0,200	0,720			1	0,436	0,626	
	0,2	0,385	0,646			0,2	0,643	0,543	
$arphi_1 =$	0,4	0,313	0,675	ے ا	ے ع	0,4	0,580	0,568	
	0,6	0,263	0,695	$\zeta_2 - 1$	ζ_1 –	0,6	0,525	0,590	
	0,8	0,227	0,709]		0,8	0,477	0,609	
при $a = 1, 2, b = 0, 8, N = 0, 9$			при $a = 1, 2, b = 0, 8$						
	0,2	0,057	1,155	$\xi_1 = 1$	$\xi_2 =$	0,2	0,623	0,701	
	0,4	0,098	1,121			0,4	0,589	0,728	
$\varphi_2 =$	0,6	0,130	1,096			0,6	0,562	0,751	
	0,8	0,156	1,075			0,8	0,538	0,770	
	1	0,176	1,059			1	0,518	0,786	
$\varphi_1 =$	0,2	0,306	0,955	$\xi_2 = 1$	1 8 _	0,2	0,704	0,673	
	0,4	0,259	0,993			0,4	0,649	0,681	
	0,6	0,224	1,021		$\zeta_2 = 1$	ς_1 –	0,6	0,600	0,720
	0,8	0,197	1,042			0,8	0,556	0,755	
	$arphi_2 = $ $arphi_1 = $ $arphi_2 = $ $arphi_2 = $	$\varphi_2 = \begin{vmatrix} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \end{vmatrix}$ $\varphi_1 = \begin{vmatrix} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \end{vmatrix}$ $\Pi \text{ри } a = 1, 2,$ $\varphi_2 = \begin{vmatrix} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \end{vmatrix}$ $\varphi_1 = \begin{vmatrix} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \end{vmatrix}$							

Результаты исследований (см. табл. 5) в виде трехмерной поверхности, построенной средствами пакета прикладных программ MathCad в разных ракурсах, в зависимости от параметров моделей представлены на рис. 1 (a, b).

а) $x_{\upsilon 1}\left(\varphi_{1},\varphi_{2}\right)$ для значений параметров: 1-a=0,4 , b=0,25 , N=0,3 ; 2-a=0,8 , b=0,4 , N=0,6 ; 3-a=1,2 , b=0,8 , N=0,9 ;

б) $x_{v2}\left(\xi_1,\xi_2\right)$ для значений параметров: 1-a=0,4, b=0,25; 2-a=0,8, b=0,4; 3-a=1,2, b=0,8;

Рис. 1. Синергетическая регуляризация спроса акторов на контент в СИС

Анализ полученных результатов показывает, что для фиксированных наборов значений параметров системы (2) (см. рис. 1):

- регуляризация спроса акторов на контент в СИС достигается варьированием параметров синтезированного синергетического управления (см. табл. 2);
- для изменения уровня спроса на контент достаточно варьировать значениями не всех параметров синтезированного синергетического управления (см. табл. 2), а только одного из них. Это позволит непосредственно упростить процесс управления параметрами взаимодействия акторов виртуального сообщества и повысить его эффективность;
- точка всплеска синергетического эффекта (см. табл. 2) является параметром порядка системы, в котором реализуется редукция степеней свободы синтезированной системы и поставленное задание взаимодействия акторов для синергетически управляемого перехода к желаемому состоянию информационной безопасности;
- количество параметров регуляризации спроса акторов на контент СИС, их влияние на управляемые процессы взаимодействия и способ реализации определяются выбранным видом притягивающего атрактора (см. табл. 1) для системы нелинейных дифференциальных уравнений;
- синтезированные модели синергетического управления, в отличии от известных, учитывают природные особенности поведения акторов в СИС, поскольку они основываются на уменьшении заинтересованности в контенте во времени и, как следствие, уменьшении его ценности, конкуренцию акторов на публикацию актуального контента и т.д.

Исследование моделей

В соответствии методологии исследования моделей систем [16–20] проведен качественный анализ вариантов рассмотренных моделей с показателями поведения акторов СИС при распространении контента деструктивного характера. С этой целью средствами сервиса контекстного поиска Google AdWords было определено динамику среднего количества запросов акторов СИС на словосочетание «визитка Яроша» в период с октября 2014 г. по сентябрь 2015 г. с таргетингом территории Украины и использованием поискового сервиса Google. Установлено, что рабочие параметры системы нелинейных дифференциальных уравнений (2) принимают значения: изменение скорости спроса на

контент a=0,7; изменение процесса конкуренции b=0,45 и скорость предложения по предоставлению контента c=0,3.

Для регуляризации спроса акторов на контент СИС, связанного со словосочетанием «визитка Яроша» использовано модель притягивающего атрактора $\psi_{v1}(x,y)$ и синтезировано синергетическое управление $u_{y1}(x,y)$ с такими параметрами: уровень предложения по предоставлению контента N=0,35; параметры регуляризации $\varphi_1=0,6$ і $\varphi_2=0,3$. Вследствие побуждения к возникновению в виртуальном сообществе акторов процессов управляемой самоорганизации синергетическое управление, а соответственно и управление спросом будет изменяться как показано на рис. 2.

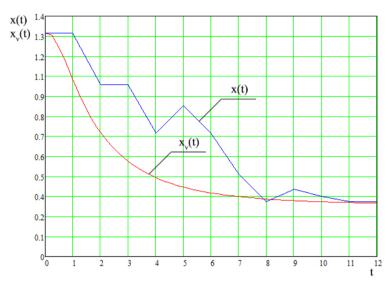


Рис. 2. Динамика изменения спроса акторов на контент «визитка Яроша»: x(t) – спрос на контент, тыс. запросов; $x_v(t)$ – синергетически управляемый спрос, тыс. запросов

Рис. 2 демонстрирует, что синтезированное управление позволяет ускорить протекание переходных процессов сложной нелинейной системы в реальном времени и обеспечивает подавление хаотической динамики и гарантирует переход к управляемому состоянию. Таким образом, синергетичекое управление спросом акторов на контент способствует существенному снижению эффективности действий злоумышленников при реализации угроз информационной безопасности через информационные влияния на акторов СИС посредством информационного пространства.

Выводы

Представленные в статье результаты валидации и исследования моделей синергетического управления взаимодействием акторов в СИС в разрезе спроса на контент проведены с соблюдением всех требований соответственно к методологии проверки достоверности и правильности моделей систем. Полученные результаты подтверждают, что разработанная концепция [7] и построенные на ее основе модели [12, 13] адекватно описывают процессы взаимодействия акторов виртуальных сообществ и их особенности. Экспериментальные результаты процессов исследования взаимодействия акторов СИС на примере реальных информационных акций, которые получили широкую огласку в информационном пространстве показали, что разработанная концепция позволяет реализовывать эффективные переходы к заданным устойчивым управляемым состояниям информационной безопасности.

Литература

- 1. Monge P.R., Contractor N.S. Theories of Communication Networks. Oxford: Oxford University Press, 2003.
- 2. Watts D.J. Six Degrees. The Science of a Connected Age. London: William Heinemann, 2003.
- 3. Горбулін В.П., Додонов О.Г., Ланде Д.В. Інформаційні операції та безпека суспільства: загрози, протидія, моделювання. Київ: Інтертехнологія, 2009.
- 4. Грищук Р.В. Стартап віртуальних спільнот у соціальних мережах за принципом критичної маси. Захист інформації, 2015, Спеціальний випуск, с. 19–25.
- 5. Даник Ю.Г., Грищук Р.В. Синергетичні ефекти в площині інформаційного та кібернетичного протиборства. Актуальні проблеми управління інформаційною безпекою держави. Київ: Центр навчальних, наукових та періодичних видань НА СБ України, 2015, с. 235–237.
- 6. Даник Ю.Г., Грищук Р.В., Самчишин О.В. Мобільні соціальні інтернет-сервіси як один із різновидів масової комунікації на сучасному етапі. Безпека інформації, 2015, т. 21, ч. І, с. 16–20.
- 7. Грищук Р.В. Молодецька К.В. Концепція синергетичного управління процесами взаємодії агентів у соціальних інтернет-сервісах. Безпека інформації, 2015, т. 21, ч. ІІ, с. 123–130.
- 8. Barrett Ch., Eubank S., Marathe M. Modeling and simulation of large biological, information and socio-technical systems: an interaction based approach. Interactive Computation, 2006, pp. 353–392.
- 9. Earl J., Kimport K. Digitally Enabled Social Change: Activism in the Internet Age. Cambridge: MIT, 2011
- 10. Morozov E. The Net Delusion: The Dark Side of Internet Freedom. NewYork: PublicAffairs, 2012.
- 11. Колесников А.А. Синергетическое методы управления сложными системами: теория системного синтеза. Москва: Едиторал УРСС, 2005.
- 12. Молодецька К.В. Спосіб підтримання заданого рівня попиту акторів соціальних інтернетсервісів на контент. Радіоелектроніка, інформатика, управління, 2015, № 4(35), с. 113— 117.
- 13. Молодецька К. В. Синтез синергетичного управління попитом агентів на контент у соціальних інтернет-сервісах. Інформатика та математичні методи в моделюванні, 2015, т. 5, № 4, с. 330–338.
- 14. Молодецька К.В. Методика вибору атрактора для управління динамікою процесів взаємодії акторів у соціальних інтернет-сервісах. Інформаційна безпека, 2014. № 3(15), № 4(16), с. 146–151.
- 15. Epstein J. Nonlinear Dynamics, Mathematical Biology, and Social Science. Massachusetts: Addison-Wesley Publishing Company, 1997.
- 16. Томашевський В.М. Моделювання систем. Київ: Видавнича група ВНУ, 2005.
- 17. Sargent R.G. A New Statistical Procedure for Validation of Simulation and Stochastic Models. Technical Report SYR-EECS-2010-06. Department of Electrical Engineering and Computer Science. New York, 2010, pp. 1–14.
- 18. Коваль О.В. Верифікація комп'ютерної моделі системи інформаційного управління. Вісник Національного технічного університету України «КПІ». Інформатика, управління та обчислювальна техніка, 2014, № 61, с. 45–48.
- 19. Maevsky D.A., Maevskaya E.J., Jekov O.P., Shapa L.N. Verification of the software reliability models // Reliability: theory & applications, 2014, vol. 9, no. 3 (34), pp. 14–23.
- 20. Грищук Р.В. Верифікація і дослідження спектральних Р- та гібридних Р-L-моделей процесу нападу на інформацію. Вісник Житомирського державного технологічного університету, 2009, № II (49), с. 69–76.
- 21. Андриевский В.Р. Фрадков А.Т. Управление хаосом: методы и приложения // Автоматика и телемеханика, 2003, ч. І: Методы, № 5, с. 3–45.

ISSN 1512-1232

- 22. Талагаев Ю.В. Тараканов А.Ф. Многопараметрический анализ на основе критерия Мельникова и оптимальное подавление хаоса в периодически возмущаемых динамически системах. Известия высших учебных заведений. Прикладная нелинейная динамика, 2011, т. 19, № 4, с. 77–90.
- 23. Самойленко А.М., Кривошея С.А., Перестюк М.О. Диференціальні рівняння у прикладах і задачах. Київ: Вища школа, 1994.

Статья получена: 2016-02-18