Теорія і методологія наукових досліджень

УДК 519.7

Ю.А. Тимонин

к.т.н., доцент

Ю.Б. Бродский

к.т.н., доцент

Житомирский национальный агроэкологический университет

ИССЛЕДОВАНИЕ НЕЛИНЕЙНОЙ ЛОГИСТИЧЕСКОЙ ФУНКЦИИ ДЛЯ МОДЕЛИРОВАНИЯ ЭКОНОМИЧЕСКОЙ СТАГНАЦИИ

Рассмотрено развитие и применение нелинейной логистической функции для моделирования экономической стагнации. Показаны обобщенный характер нелинейной логистической функции и экономическое содержание ее параметров. Нелинейные параметры логистической функции отражают потери стоимости резистивного и емкостного характера.

Постановка проблемы

Если для отображения ускоренного роста используют экспоненциальную функцию, то в случае стагнации, когда рост замедляется, используют логистические функции [1]. Как отмечено в работе [2] «Эти функции находят применение в различных областях: от биологии до экономики». Логистические S-образные кривые применяют, в основном, для математического описания эмпирических данных различных процессов [2–6]. Однако такое применение логистической кривой ограничено описательным характером стагнации, которое лишено объяснений причин и механизмов замедления роста.

В качестве инструмента математического моделирования наибольшее распространение получила логистическая функция Ферхюльста (1838 г.), которая нашла широкое применение в математической экологии, где она используется как основа моделей Лотки-Вольтерра для отображения взаимодействия популяций [7, 8]. В экономике применение логистической функции Ферхюльста имеет характер отдельных примеров [4]. Такое ограниченное применение можно объяснить эвристическим происхождением логистической функции, которое затрудняет ее развитие и сдерживает применение в задачах математического моделирования и управления. Моделированию стагнации препятствует малое количество степеней свободы (два параметра) функции Ферхюльста и неопределенность экономической интерпретации параметров.

Поэтому имеет место актуальная проблема развития логистической функции и определения экономического содержания ее параметров с целью моделирования экономической стагнации. Решение этой проблемы связано с

10.4

использованием нелинейной логистической функции, которая имеет больше степеней свободы и обоснованную интерпретацию параметров [8].

В работе рассматривается обобщение логистической функции Ферхюльста и ее применение для моделирования режимов поведения экономических субъектов, связанных со стагнацией.

Анализ последних исследований

В последних исследованиях, связанных с применением логистической функции в экономике, прослеживаются два направления. Первое направление связано с совершенствованием математического описания эмпирического материала макроэкономики с помощью логистической кривой [2, 5, 6]. В работе [6] рассмотрено применение логистической кривой для описания кризисного состояния экономики Японии в послевоенный период. В работе [2] рассмотрено применение логистической кривой для описания стагнационных этапов экономики США и для повышения точности описания предложено семейство дифференциальных уравнений, которое охватывает практически весь спектр *S*-образных кривых. Однако предложенные злесь уравнения имеют эвристическое происхождение и не связаны с уравнением Ферхюльста.

Второе направление связано с теоретическим обоснованием логистической функции. В работе [9] описана универсальная модель экономической системы в виде нелинейного дифференциального уравнения 2-ого порядка, из которого можно получить логистическое уравнение Ферхюльста как частный случай. Такой подход позволяет рассматривать универсальную модель экономической системы как теоретическую основу логистического уравнения и использовать ее для такого развития логистической функции, которое обеспечит ее применение для задач экономического анализа и прогнозирования стагнации.

Для разрешения выявленной проблемы следует решить следующие задачи:

- теоретически обосновать логистическую модель как частный случай универсальной модели экономической системы;
- показать развитие логистической модели Ферхюльста в направлении нелинейного дифференциального уравнения;
- установить связь между нелинейными параметрами логистического уравнения и измеряемыми экономическими величинами.

Объект и методы исследований

Объектом исследований является обобщенная логистическая модель и ее применение для математического моделирования экономической стагнации. Логистическая модель задана нелинейным дифференциальным уравнением 1-ого порядка и его решением в виде нелинейной логистической функции. Для исследования логистической модели использованы методы моделирования [9] и проектирования [10] экономических систем. Для приближенного решения нелинейного дифференциального уравнения использован метод конечных

разностей. Цель исследования состоит в определении свойств нелинейной логистической модели и экономического содержания ее параметров, необходимых для моделирования стагнации.

Результаты исследований

Теоретическое обоснование образования логистической модели.

Универсальная модель экономической системы (ЭС) описывает рост стоимости собственного капитала произвольного экономического объекта с учетом потерь. Универсальная модель ЭС задана нелинейным неоднородным дифференциальным уравнением 2-ого порядка [9]:

$$a_2 \frac{d^2 S}{dt^2} + (1 + a_1 S) \frac{dS}{dt} + a_0 S^2 - \varphi^0 S = s^+,$$
1)

где S — переменная, обозначающая стоимость собственного капитала ЭС; a_0, a_1, a_2 — параметры ЭС, которые характеризуют потери стоимости в ЭС; φ^0 — показатель экспоненциального роста; s^+ — приток стоимости из внешней среды, компенсирующий потери.

При $a_2 = 0$ уравнение (1) вырождается в нелинейное неоднородное дифференциальное уравнения 1-ого порядка:

$$(1 + a_1 S) \frac{dS}{dt} + a_0 S^2 - \varphi^0 S = s^+,$$

Нелинейность уравнения (2) проявляется за счет наличия слагаемых с коэффициентами a_0 и a_1 . При $s^+=0$ и $a_0=\varphi^0/b_0$ получим нелинейное логистическое уравнение в типовой форме:

$$\left(1 + a_1 S\right) \frac{dS}{dt} = \varphi^0 \left(1 - \frac{S}{b_0}\right) S. \tag{3}$$

где $b_0 = \varphi^0 / a_0$ — порог логистической функции.

Из уравнений (1–3) следует, что логистическое уравнение (3) можно получить как частный случай универсальной модели экономической системы (1).

Развитие логистической модели. Нелинейное логистическое уравнение (3) можно рассматривать как результат развития уравнения Ферхюльста $\frac{dS}{dt} = \phi^0 \bigg(1 - \frac{S}{b_0} \bigg) S$ в направлении дополнительной нелинейности путем введения

слагаемого $a_1 S \frac{dS}{dt}$ с коэффициентом a_1 . В связи с таким развитием уравнение

(3) можно назвать обобщенным логистическим уравнением. Уравнение (3) имеет аналитическое решение, которое задает обобщенную логистическую функцию в виде трансцендентного уравнения:

$$S(t) = g(b_0 - S(t))^{1+G} e^{\varphi^0 t},$$
 4)

где g — величина, отражающая начальное значение стоимости; $G=a_1b_0=a_1\varphi^0/a_0$ — интегральный показатель потерь. При $a_1=0$ обобщенная логистическая функция сводится к известной логистической функции Ферхюльста $S(t)=g(b_0-S(t))$ е φ^{0} , которую записывают в виде:

$$S(t) = \frac{gb_0 e^{\varphi^0 t}}{1 + ge^{\varphi^0 t}}.$$
 5)

Явную форму обобщенной логистической функции (4) можно получить, решая соответствующее (3) конечно-разностное уравнение. Дискретная обобщенная логистическая функция стоимости в рекуррентной форме имеет вид:

$$S_{k+1} = \left[1 + \varphi^0 \frac{1 - S_k / b_0}{\left(1 + a_1 S_k \right)} \right] S_k + \frac{\Delta S_k^+}{\left(1 + a_1 S_k \right)}.$$
 6)

На рисунке 1 наведены результаты расчетов логистической функции стоимости, выполненных по формуле (6) при $\varphi^0=0.2$, $b_0=10$, $\Delta S_k^+=0$. Семейство кривых получено для следующих значений параметра: $a_1=0$, $a_1=0.1$, $a_1=0.2$.

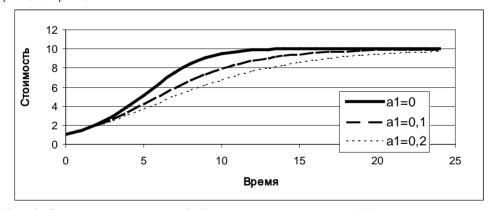


Рис. 1. Семейство кривых обобщенной логистической функции стоимости

Связь между параметрами логистического уравнения и экономическими величинами. Применение обобщенной логистической функции для моделирования экономической стагнации требует экономической интерпретации ее параметров, которая состоит в установлении связи между параметрами нелинейного логистического уравнения и измеряемыми экономическими

величинами. Для определении такой связи следует сопоставить линеаризованное выражение логистического уравнения с известными выражениями, в которых используются измеряемые экономические величины.

Нелинейные элементы логистического уравнения рассматриваются как описания потерь стоимости. Будем полагать, что параметры уравнения отражают потери стоимости в ЭС, которые препятствуют экспоненциальному росту. Для этого перепишем уравнение (2) в виде:

$$\frac{dS}{dt} = \varphi^0 S - s^- + s^+, \tag{7}$$

где $s^- = a_1 S \frac{dS}{dt} + a_0 S^2$ — скорость изменения стоимости под действием

элементов, препятствующих росту. Величина s^- описывает потери стоимости в

виде суммы
$$s^-=s_1^-+s_0^-$$
 элементов $s_1^-=A_1\frac{dS}{dt}$, $s_0^-=A_0S$, где A_n — коэффициенты потерь.

Линеаризация логистического уравнения. Чтобы линеаризовать логистическое уравнение воспользуемся представлением коэффициентов потерь в виде переменных параметров:

$$A_1(S) = a_1 S$$
, $A_0(S) = a_0 S$.

Тогда, полученное из (2) линейное уравнение с переменными параметрами примет экспоненциальный вид:

$$(1 + A_1) \frac{dS}{dt} - \varphi^0 \left(1 - \frac{A_0}{\varphi^0} \right) S = s^+ .$$
 9)

Полагая, что s^+ = 0 и используя подстановку $1/B_0 = A_0/\varphi^0$ уравнение роста (9) перепишем в виде:

$$(1+A_1)\frac{dS}{dt} - \varphi^0(1-1/B_0)S = 0.$$
 (10)

Для экономической интерпретации параметров потерь воспользуемся методом «замороженных» коэффициентов. При фиксированных значениях параметров, получим, что решение уравнения (10) описывает экспоненциальный рост стоимости $S(t) = S(0)e^{\phi t}$ с показателем роста:

$$\phi = \varphi^0 \frac{1 - 1/B_0}{1 + A_1} \,. \tag{11}$$

Показатель роста (11) можно сравнить с выражениями для рентабельности, которые описываются с помощью измеряемых экономических величин. Для

этого воспользуемся выражением для рентабельности собственного капитала в виде произведения [10]:

$$r = \frac{y^p}{S} = \alpha \rho n \beta i, \qquad 12)$$

где $\alpha=\frac{y^p}{y}$, $\rho=\frac{y}{v}$, $n=\frac{v}{V^v}$ $\beta=\frac{V^v}{V}$, $i=\frac{V}{S}$ — сомножители, описывающие

отношения таких величин, как прибыль — y^p , доход — y, затраты — v, рабочие средства — V^v и средства актива — V.

Из этих сомножителей с потерями связаны коэффициенты, которые описывают долю прибыли в доходе – $\alpha = \frac{y^p}{y}$, долю рабочих средств в активе –

 $eta = rac{V^{\, v}}{V}$ и оборачиваемость рабочих средств в затратах — $n = rac{v}{V^{\, v}}$. Представляя доход суммой прибыли и изъятий — $y = y^{\, p} + y^{\, q}$, запишем долю прибыли в доходе — $\alpha = y^{\, p} / y = 1/ig(1 + \alpha^{\, q}ig)$, где $\alpha^{\, q} = y^{\, q} / y^{\, p}$ — коэффициент изъятий из дохода, который включают налоги и процентные платежи. Коэффициент $\alpha^{\, q}$ отражает сопротивление росту за счет изъятий и может принимать значения в диапазоне $\alpha^{\, q} \in [0; \infty]$. Номинальным можно считать значение $\alpha^{\, q}_{\, 0} \approx 1$. Рассмотрим оборачиваемость средств актива в затратах — $N = rac{v}{V} = n \beta$.

Воспользуемся тождеством $N=1-\frac{1}{1/(1-N)}$ и обозначим $\eta=1/(1-N)$. Тогда $N=1-1/\eta$. Величина $\eta=V/(V-v)$ отражает емкость активов V по отношению к затратам v и может принимать значения в диапазоне $\eta\in\{1;\infty\}$. Номинальным можно считать значение порядка $10,\ \eta_0\approx 10$. С учетом введенных коэффициентов потерь перепишем выражение (12) в виде:

$$r = \rho i \frac{1 - 1/\eta}{1 + \alpha^q} \,. \tag{13}$$

Сравнивая выражения для показателей роста (11) и (13), получим экономическое содержание параметров потерь:

$$A_1 = \alpha^q, \ B_0 = \eta.$$
 14)

№ 1 2010

Из выражений (14) следует, что нелинейный компонент уравнения (9) $s_1^- = A_1 \frac{dS}{dt} = \alpha^q \frac{dS}{dt}$ описывает потери резистивного характера, а компонент $s_0^- = A_0 S = S/\eta$ — потери емкостного характера. На режим стагнации влияют как значения коэффициентов потерь, так и изменения стоимости. Логистический порог $b_0 = S/(1-\beta n)$ зависит не только от доли рабочих средств в активе β и оборачиваемости рабочих средств в затратах n, но и от текущего значения стоимости.

Для предприятий Украины можно привести следующие экспертные оценки значений параметров потерь:

- повышенные значения коэффициента изъятий $\alpha^q \in [3; 5]$, что связано с большими ставками налогов и процентных платежей;
- пониженные значения доли рабочих средств в активе $\beta \in [0.1; 0.3]$, что можно связать, в первую очередь, с большими запасами исходной и готовой продукции;
- пониженные значения оборачиваемости рабочих средств в затратах $n \in [0.5; 2]$, что связано с недостатками технологии бизнес-процессов.

При $\beta=0.25$ и n=2 получим низкие значения коэффициента оборачиваемости средств актива в затратах $N=n\beta=0.5$ и параметра $B_0=\eta=2$, что приводит к повышенным потерям емкостного характера.

Уменьшение резистивных потерь достигается путем снижения налогов и процентных платежей, а уменьшение емкостных потерь — за счет увеличения доли рабочих средств в активе β и оборачиваемости рабочих средств в затратах n.

Выводы и перспективы дальнейших исследований

- 1. Дано теоретическое обоснование образования логистической модели. Логистическая модель рассматривается как частный случай универсальной модели экономической системы 2-ого порядка. При $a_2=0$ универсальная модель вырождается в нелинейное логистическое дифференциальное уравнения 1-ого порядка.
- 2. Предложенное развитие логистического уравнения Ферхюльста состоит в дополнении уравнения нелинейным слагаемым. Полученное обобщенное логистическое уравнение имеет аналитическое решение в виде обобщенной логистической функции.
- 3. Параметры нелинейного логистического уравнения имеют характер потерь стоимости. Уменьшение резистивных потерь достигается путем снижения налогов и

процентных платежей, а уменьшение емкостных потерь - за счет увеличения доли рабочих средств в активе и оборачиваемости рабочих средств в затратах.

- 4. Установленная связь между параметрами уравнения и измеряемыми экономическими величинами расширяет область применения нелинейного логистического уравнения для математического моделирования экономической стагнации и позволяет описывать и объяснять процессы входа в режим стагнации и выхода из него.
- 5. Полученные результаты свидетельствуют о целесообразности дальнейших исследований и использовании универсальной модели экономической системы для экономико-математического моделирования кризисных ситуаций.

Література

- 1. *Ляшенко І.М.* Основи математичного моделювання економічних, екологічних та соціальних процесів: навч. посіб. // *І.М. Ляшенко, М.В. Коробова*, *А.М. Столяр* / Тернопіль: Навч. книга Богдан, 2006. 304 с.
- 2. *G. Jarne*. "S-shaped" curves in economic growth. A theoretical contribution and an application. //*G. Jarne*, *J. Sanchez-Choliz*, *F. Fatas-Villafranca*./ Evolutionary and Institutional Economics Review. Vol. 3, -2006. -Ne 2 C. 239-259.
- 3. Нефедов С.А. О законах истории и математических моделях // С.А. Нефедов / Известия Уральского государственного университета. 2000. № 15. С. 121—129.
- 4. *Михайлов В.В.* Использование логистической кривой при оценке эффективности инновационной деятельности. // *В.В. Михайлов*, *В.Н. Московкин* / БИЗНЕСИНФОРМ. Харьков, 2002 № 9 10, С. 48–51.
- 5. Чечулин В.Л. Об инфляционных циклах // В.Л. Чечулин, А.С. Пьянков / Журнал экономической теории (РАН). -2009. -№ 3, С. 236–240.
- 7. Петросян Л.А. Введение в математическую экологию // Л.А. Петросян, В.В. Захаров /– Л.: Изд-во Ленингр. ун-та. 1986. 224 с.
- 8. *Бродский Ю.Б.* Нелинейная логистическая модель экономической стагнации // *Ю.Б. Бродский, Ю.А. Тимонин* / Розвиток агробізнесу в Україні: проблеми, пріоритети, перспективи. Матеріали Всеукраїнської науково-практичної конференції, присвяченої 10-річчю факультету аграрного менеджменту, 25-27 березня 2010 р. Житомир: Вид-во ЖДУ ім. І. Франка, 2010. 312 с. С. 146–148.
- 9. Грабар І.Г. Універсальна модель системи: методологічний аспект // І.Г. Грабар, Ю.О. Тимонін, Ю.Б. Бродський / Вісник ЖНАЕУ. Житомир, 2009. N 1. С. 358—366.
 - 10. Грабар И.Г. Подход к общей задаче проектирования экономических

вісник жнаєу Теорія і методологія наукових досліджень

систем. // И.Г. Грабар, Ю.А. Тимонин, Ю.Б. Бродский / Вісник ЖНАЕУ. – Житомир, 2009. – № 2 (25) т. 2. – С. 52–60.

№ 1

2010