УДК 512.64+512.56

Бондаренко В. В., Бондаренко В. М., Степочкина М. В., Червяков И. В.

(Институт математики НАН Украины, Житомирский национальный агроэкологический университет)

1-НАДСУПЕРКРИТИЧЕСКИЕ ЧАСТИЧНО УПОРЯДОЧЕННЫЕ МНОЖЕСТВА С ТРИВИАЛЬНОЙ ГРУППОЙ АВТОМОРФИЗМОВ И МІΝ-ЭКВИВАЛЕНТНОСТЬ. І

In this paper we describe a natural class of partially ordered sets which are min-equivalent to 1-oversupercritical partially ordered sets with trivial group of automorphisms.

В этой работе мы описываем естественный класс частично упорядоченных множеств, minэквивалентных 1-надсуперкритическим частично упорядоченным множествам с тривиальной группой автоморфизмов.

М. М. Клейнер [1] доказал, что ч. у. (частично упорядоченное) множество S имеет конечный представленческий тип тогда и только тогда, когда оно не содержит подмножеств вида (1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5) и $(\mathbb{N}, 4)$, которые называются критическими ч. у. множествами; теперь они называются критическими множествами Клейнера. С другой стороны Ю. А. Дрозд [2] показал, что ч. у. множество имеет конечный представленческий тип тогда и только тогда, когда его квадратичная форма Титса слабо положительна (т. е. положительна на множестве неотрицательных векторов). Следовательно критические множества Клейнера являются критическими и относительно слабой положительности формы Титса, причем других таких множеств нет. В работе [3] В. М. Бондаренко и М. В. Степочкина доказали, что ч. у. множество является критическим относительно положительности формы Титса тогда и только тогда, когда оно минимаксно эквивалентно критическому множеству Клейнера (такая эквивалентность введена В. М. Бондаренком в [4]); в этой работе полностью описаны все такие ч. у. множества, которые названы ее авторами Р-критическими.

Аналогичная ситуация имеет место и для ручных ч. у. множеств. Л. А. Назарова [5] доказала, что ч. у. множество S является ручным тогда и только тогда, когда оно не содержит подмножеств вида (1, 1, 1, 1, 1), (1, 1, 1, 2), (2, 2, 3), (1,3,4), (1,2,6) и (M,5), что эквивалентно слабой неотрицательности квадратичной формы Титса; эти множества названы ею суперкритическими. Значит суперкритические множества являются критическими относильно слабой неотрицательности формы Титса и других таких множеств нет. В. М. Бондаренко и М. В. Степочкина [6] доказали, что ч. у. множество является критическим относительно неотрицательности формы Титса тогда и только тогда, когда оно минимаксно эквивалентно суперкритическому множеству; все такие критические множества описаны ими в работе [7].

Заметим, что вместо минимаксной эквивалентности (которая еще называется (min, max)-эквивалентностью) часто удобнее пользоваться равносильной ей min-эквивалентностью, также подробно изученной в работе [3]. Мы используем именно эту эквивалентость, изучая уже 1-надсуперкритические ч. у. множества, которые "отличаются" от суперкритических множеств в такой же степени, как последние отличаются от критических. Эта статья является первой по этой тематике, в которой рассматриваются 1-надсуперкритические ч. у. множества с тривиальной группой автоморфизмов.

1. Предварительные сведения. Напомним некоторые определения и утверждения, связанные с min-эквивалентными ч. у. множествами. Мin-эквивалентность формально является частным случаем (min, max)-эквивалентности, введенной в [4], а тот факт, что они равносильны, делает ее очень удобной для конкретных вычислений. Все рассматриваемые ч. у. множества (на протяжении всей статьи) предполагаются конечными, а под ч. у. подмножествами (которые мы, как правило, называем просто подмножествами) всегда подразумеваются полные, относительно отношения частичного порядка, подмножества.

Пусть S — ч. у. множество и a — его минимальный элемент. Через S_a^{\uparrow} будем обозначать ч. у. множество, которое совпадает с S как обычное множество, с тем же отношеним порядка на $S \setminus \{a\}$, но при этом элемент a является уже максимальным, причем a сравнимо с x в S_a^{\uparrow} тогда и только тогда, когда a несравнимо с x в S. Будем писать $S_{xy}^{\uparrow\uparrow}$ вместо $(S_x^{\uparrow})_y^{\uparrow}$, $S_{xyz}^{\uparrow\uparrow\uparrow}$ вместо $((S_x^{\uparrow})_y^{\uparrow})_z^{\uparrow}$ и т. д.

Ч. у. множество T называется \min -эквивалентным ч. у. множеству S, если

$$T=S_{x_1x_2...x_p}^{\uparrow\uparrow...\uparrow} \quad (p\geq 0);$$

здесь, для каждого $i \in \{1, \ldots, p\}$, элемент x_i является минимальным элементом в $S_{x_1x_2...x_{i-1}}^{\uparrow\uparrow...\uparrow}$ (только при выполнении этиго условия указанное выражение имеет смысл); если p=0, то T=S. Заметим, что не требуется, чтобы элементы x_1, x_2, \ldots, x_p были различными.

Понятие min-эквивалентности можно естественным образом продолжить до понятия min-изоморфизма, считая, что ч. у. множества S и S' min-изоморфны, если существует ч. у. множество T, min-эквивалентное S и изоморфное S'.

Пусть, как и раньше, S — ч. у. множество. Конечная последовательность $\alpha=(x_1,x_2,\ldots,x_p)$ элементов из S называется min- ∂ onустимой, если выражение $\overline{S}=S_{x_1x_2...x_p}^{\uparrow\uparrow...\uparrow}$ имеет смысл (случай p=0 не исключается). В этом случае будем также писать $\overline{S}=S_{\alpha}^{\uparrow}$.

Множество всех min-допустимых последовательностей обозначаем $\mathcal{P}(S)$, а множество всех min-допустимых последовательностей без повторений — $\mathcal{P}_1(S)$. Подмножество в S, соответствующее последовательности $\alpha = (x_1, x_2, \dots, x_p) \in \mathcal{P}_1(S)$ (т. е. состоящее из всех ее элементов x_i), обозначается через $[\alpha]_S$. Заметим, что для min-эквивалентных ч. у. множеств S и T не всегда существует последовательность $\alpha \in \mathcal{P}_1(S)$ такая, что $T = S^{\uparrow}_{\alpha}$ (см. п. 6 [3]).

Согласно следствиям 5 и 9 работы [3] имеем, что если $\alpha, \beta \in \mathcal{P}_1(S)$ и $[\alpha]_S = [\beta]_S$, то $S_{\alpha}^{\uparrow} = S_{\beta}^{\uparrow}$; кроме того, если X — подмножество в S, то в $\mathcal{P}_1(S)$ существует последовательность α , такая, что $[\alpha]_S = X$, тогда и только тогда, когда подмножество X нижнее. Следовательно для нижнего подмножества X можно определить ч. у. множество S_X^{\uparrow} , полагая $S_X^{\uparrow} = S_{\alpha}^{\uparrow}$, где $\alpha \in \mathcal{P}_1(S)$ — любая из

последовательностей таких, что $[\alpha]_S = X$. В силу предложения 6 [3] a < b в $\overline{S} = S_X^\uparrow$ в том и только том случае, когда выполняется одно из следующих условий:

- а) a < b в S и либо $a, b \in X$, либо $a, b \notin X$;
- b) $a \times b$ в S и $b \in X, a \notin X$.

Другими словами, отношение частичного порядка на X и $S \setminus X$ остается прежним, а сравнимость и несравнимость между элементами X и $S \setminus X$ меняются местами, причем новая сравнимость может быть только вида x > y, где $x \in X$ и $y \in S \setminus X$.

Из сказанного, в частности, следует, что если Z — нижнее подмножество в X такое, что $Z < S \setminus X$, то Z является нижним подмножеством и в S_X^{\uparrow} .

В работе [3] указан алгоритм для описания (с точностью до изоморфизма) всех ч. у. множеств, min-эквивалентных фиксированному ч. у. множеству S. Он состоит из следующих шагов.

- I. Описать все нижние подмножества $X \neq S$ в S, и для каждого из них построить ч. у. множество $S_{\mathbf{x}}^{\uparrow}$.
- II. Описать все пары (Y, X), состоящие из собственного нижнего подмножества Y в S и непустого нижнего подмножества X в Y такого, что $X < S \setminus Y$; для каждой такой пары построить ч. у. множество $S_{YX}^{\uparrow\uparrow}=(S_Y^{\uparrow})_X^{\uparrow}$.
- III. Среди полученных в I и II ч. у. множеств выбрать по одному из каждого класса изоморфных множеств.

Подчеркием, что в I случай $X = \emptyset$ не исключается, в отличии от случая X = S (в обоих случаях $S_X^{\uparrow} = S$).

Полученные в результате ч. у. множества будут образовывать полное множество (попарно неизоморфных) ч. у. множеств, min-изоморфных S.

Указанные в I подмножества X и X' называются $\mathit{сильно}$ изоморфными, если существует автоморфизм $\varphi: S \to S$, такой, что $\varphi(X) = X'$ (как ч. у. подмножества). Аналогично, две указанные в II пары (Y, X) и (Y', X') назовем сильноизоморфными, если существует автоморфизм $\varphi: S \to S$, такой, что $\varphi(Y) = Y'$ и $\varphi(X) = X'$. Очевидно, что подмножества в I и пары подмножеств в II достаточно описывать с точностью до сильного изоморфизма.

Двойственным образом определяются тах-эквивалентность и тах-изоморфизм, S_X^{\downarrow} и т. п. Двойственность означает, что от ч. у. множества S нужно перейти к двойственному ч. у. множеству S^{op} , рассмотреть для него то или иное понятие или утверждение и переформулировать его в терминах начального ч. у. множества S. Напомним, что двойственное ч. у. множество S^{op} совпадает с Sкак обычное множество и при этом x < y в $S^{\text{ор}}$ тогда и только тогда, когда x > y B S.

Min-эквивалентность и max-эквивалентность связаны между собой следующим равенством (см. лемму 17 [3]): $S_X^{\uparrow} = S_{S \setminus X}^{\downarrow}$, где X — нижнее подмножество S. Если S самодвойственно, т. е. $S^{\text{op}} \cong S$ (символ \cong обозначает, как обычно, изоморфизм ч. у. множеств), то существует биективное отображение $d: S \to S$ такое, что d(x) < d(y) в том и только в том случае, когда x > y. Если при этом группа автоморфизмов ч. у. множества S тривиальна, то такое отображение единственно. В этом случае для любого нижнего подмножества X в S обозначим через \overline{X} нижнее подмножество $d(S \setminus X) \cong (S \setminus X)^{\mathrm{op}}$; очевидно, что $\overline{\overline{X}} = X$. Тогда из леммы 17 [3] имеем, что

$$S_{\overline{X}}^{\uparrow} \cong (S_X^{\uparrow})^{\text{op}} \tag{*}$$

(действительно, в силу определения ч. у. множества вида S_X^{\uparrow} , приведенного выше, и отображения d имеем очевидный изоморфизм $S_{d(S\backslash X)}^{\uparrow}\cong (S_{S\backslash X}^{\downarrow})^{\mathrm{op}}$, а в силу указанной леммы — $S_{S\backslash X}^{\downarrow}=S_X^{\uparrow}$). Нижние подмножества X и \overline{X} будем называть podственными. В случае, когда группа автоморфизмов ч. у. множества S нетривиальна, родственность зависит от выбора отображения d, однако при переходе от d к d' пара родственных подмножеств переходит в сильно изоморфную пару.

2. 1-надсуперкритические ч. у. множества. Пусть P — фиксированное ч. у. множество. Будем говорить, что ч. у. множество X имеет вид P, если оно изоморфно P, и что X содержит P (как ч. у. подмножество), если в X существует подмножество, изоморфное P.

Прямой суммой $X \coprod Y$ ч. у. множеств X и Y называется ч. у. множество $X \cup Y$, где элементы обоих ч. у. множеств попарно несравнимы. Через (s) обозначаем цепь длины $1 < 2 < \ldots s$. Прямая сумма $(i_1) \coprod (i_2) \coprod \ldots \coprod (i_p)$ цепей $(i_1), (i_2), \ldots, (i_p)$ обозначается (i, i_2, \ldots, i_p) . Ч. у. множества такого вида называются *примитивными*. Прямую сумму цепи (i) и ч. у. множества X будем обозначать через (i, X).

Как уже говорилось во введении, критические ч. у. множества — это ч. у. множества вида (1,1,1,1), (2,2,2), (1,3,3), (1,2,5), $(4, \mathrm{M})$, а суперкритические — их одноэлементные расширения вида (1,1,1,1,1), (1,1,1,2), (2,2,3), (1,3,4), (1,2,6) $(5,\mathrm{M})$ (здесь M — ч. у. множество из четырех элементов и с тремя отношениями x < y, задаваемых буквой M). Критические и суперкритические ч. у. множества будем часто называть просто критическими и суперкритическими множествами.

Легко проверить, что если взять все пять критических множеств и рассмотреть все их одноточечные расширения, такие что либо новая точка изолирована (т. е несравнима со всеми старыми точками), либо образует новую изолированную цепь вместе с точками какой-либо старой изолированной цепи, а затем выбрать в этом классе ч. у. множеств все минимальные ч. у. множества относительно включения (по одному разу), то получим все суперкритические множества. Если эту же процедуру проделать уже с суперкритическими множествами, то полученные в результате ч. у. множества будем называть 1-надсуперкритическими (этот процесс можно продолжить и дальше).

Легко видеть, что 1-надсуперкритические множества — это следующие ч. у. множества:

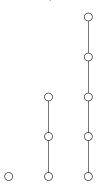
- 1) (1, 1, 1, 1, 1, 1), 2) (1, 1, 1, 1, 2), 3) (1, 1, 2, 2),
- 4) (1, 1, 1, 3), 5) (2, 3, 3), 6) (2, 2, 4), 7) (1, 4, 4),
- 8) (1,3,5), 9) (1,2,7), 10) (6, M).

Заметим, что все критические, суперкритические и 1-надсуперкритические множества являются самодвойственными.

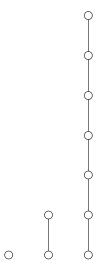
Легко видеть, что группа автоморфизмов 1-надсуперкритического множества равна S_6 в случае 1), S_4 в случае 2), $S_2 \times S_2$ в случае 3), S_3 в случае 4), S_2 в случаях 5), 6), 7) и является единичной в остальных случаях -8), 9), 10), где S_m обозначает, как обычно, симметрическую группу степени m.

3. Формулировка основного результата. Из изложенного в пункте 1 следует, что для min-эквивалентных ч. у. множеств S и T основным является случай, когда $T=S_X$, где X — нижнее подмножество S. В этой статье мы описываем ч. у. множества T такого вида в случае, когда S является примитивным 1-надсуперкритическим множеством с тривиальной группой автоморфизмов, т. е. (см. выше) для S=A,B, где

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9 | 2 \prec 3 \prec 4, 5 \prec 6 \prec 7 \prec 8 \prec 9\}:$$



 $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | 2 \prec 3, 4 \prec 5 \prec 6 \prec 7 \prec 8 \prec 9 \prec 10\}:$



Теорема 1. Пусть S — примитивное 1-надсуперкритическое множество c тривиальной группой автоморфизмов. Тогда

- 1) если X собственное нижнее подмножество S, то S_X^{\uparrow} не является самодвойственным;
- 2) если $X,Y\neq S$ различные нижние подмножества S, то S_X^{\uparrow} и S_Y^{\uparrow} неизоморфны.

Теорема 2. Пусть S — примитивное 1-надсуперкритическое множество c тривиальной группой автоморфизмов. Полное множество (попарно неизоморфных) ч. у. множеств вида S_X^{\uparrow} , где $X \neq S$ — нижнее подмножество S, cocmoum из 47-и ч. у. множеств:

- 1) из 24-х ч. у. множеств, указанных в нижеследующей таблице 1 при S=A и таблице 2 при S=B, и
- 2) двойственных κ ним ч. у. множествам, не считая самого (самодвойственного) ч. у. множества S.

Таблица 1 (для ч. у. множества (1, 3, 5))

A-1	A-2	A-3	A-4	A-5	A-6
A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18
A-19	A-20	A-21	A-22	A-23	A-24

Таблица 2 (для ч. у. множества (1, 2, 7))

B-1	B-2	B-3	B-4	B-5	B-6
B-7	B-8	B-9	B-10	B-11	B-12
B-13	B-14	B-15	B-16	B-17	B-18
B-19	B-20	B-21	B-22	B-23	B-24

Наук. вісник Ужгород ун-ту, 2011, вип. 22 , N $2\,$

4. Доказательство теоремы **2.** Пусть сначала S=A. Согласно описанному в пункте 1 алгоритму нужно рассматривать все нижние подмножества, отличные от самого множества (так как $S_S^{\uparrow}=S_{\varnothing}^{\uparrow}=S$). В этом случае имеем 47 нижних подмножеств: $A_1=\varnothing$, $A_2=\{1\}$, $A_3=\{2\}$, $A_4=\{5\}$, $A_5=\{1,2\}$, $A_6=\{1,5\}$, $A_7=\{2,3\}$, $A_8=\{2,5\}$, $A_9=\{5,6\}$, $A_{10}=\{1,2,3\}$, $A_{11}=\{1,2,5\}$, $A_{12}=\{1,5,6\}$, $A_{13}=\{2,3,4\}$, $A_{14}=\{2,3,5\}$, $A_{15}=\{2,5,6\}$, $A_{16}=\{5,6,7\}$, $A_{17}=\{1,2,3,4\}$, $A_{18}=\{1,2,3,5\}$, $A_{19}=\{1,2,5,6\}$, $A_{20}=\{1,5,6,7\}$, $A_{21}=\{2,3,4,5\}$, $A_{22}=\{2,3,5,6\}$, $A_{23}=\{2,5,6,7\}$, $A_{24}=\{5,6,7,8\}$ и $A_{25}=\overline{A_2}$, $A_{26}=\overline{A_3}$, . . . , $A_{47}=\overline{A_{24}}$ (определение подмножеств вида \overline{X} приведено в пункте 1).

Через \mathcal{A}_i будем обозначать ч. у множество A_X^{\uparrow} при $X=A_i$, а через $\mathcal{A}_{\bar{i}}$ — ч. у множество A_X^{\uparrow} при $X=\overline{A_i}$. В силу сквозной нумерации нижних подмножеств второе обозначение можно было бы и не вводить, однако с формальных соображений мы им будем пользоваться.

В таблице 1 помещено 24 ч. у множества, занумерованных символами A-1, A-2,..., A-24. Легко видеть, что все они попарно неизоморфны. Более того, все эти ч. у множества и двойственные к ним также попарно неизоморфны в совокупности, кроме A-1 и (A-1)^{ор}. Таким образом, исходя из таблицы 1 мы имеем 47 попарно неизоморфных ч. у множества (24 указаны в таблице и 23 двойственные к ним), т. е. ровно столько, сколько имеется нижних подмножеств. Укажем, какое нижнее подмножество соответствует каждому из ч. у множеств.

Легко убедиться непосредственной проверкой в том, что $A-1 \cong \mathcal{A}_1 = A$, $A-2 \cong \mathcal{A}_2$, $A-3 \cong \mathcal{A}_3$, $A-4 \cong \mathcal{A}_4$, $A-5 \cong \mathcal{A}_{\overline{5}}$, $A-6 \cong \mathcal{A}_6$, $A-7 \cong \mathcal{A}_7$, $A-8 \cong \mathcal{A}_8$, $A-9 \cong \mathcal{A}_9$, $A-10 \cong \mathcal{A}_{\overline{10}}$, $A-11 \cong \mathcal{A}_{\overline{11}}$, $A-12 \cong \mathcal{A}_{\overline{12}}$, $A-13 \cong \mathcal{A}_{13}$, $A-14 \cong \mathcal{A}_{14}$, $A-15 \cong \mathcal{A}_{15}$, $A-16 \cong \mathcal{A}_{16}$, $A-17 \cong \mathcal{A}_{\overline{17}}$, $A-18 \cong \mathcal{A}_{\overline{18}}$, $A-19 \cong \mathcal{A}_{\overline{19}}$, $(A-20 \cong \mathcal{A}_{\overline{20}}$, $A-21 \cong \mathcal{A}_{21}$, $A-22 \cong \mathcal{A}_{22}$, $A-23 \cong \mathcal{A}_{23}$, $A-24 \cong \mathcal{A}_{24}$.

Далее, в силу равенства (*) имеем: $(A-2)^{op} \cong \mathcal{A}_{\overline{2}}$, $(A-3)^{op} \cong \mathcal{A}_{\overline{3}}$, $(A-4)^{op} \cong \mathcal{A}_{\overline{4}}$, $(A-5)^{op} \cong \mathcal{A}_{5}$, $(A-6)^{op} \cong \mathcal{A}_{\overline{6}}$, $(A-7)^{op} \cong \mathcal{A}_{\overline{7}}$, $(A-8)^{op} \cong \mathcal{A}_{\overline{8}}$, $(A-9)^{op} \cong \mathcal{A}_{\overline{9}}$, $(A-10)^{op} \cong \mathcal{A}_{10}$, $(A-11)^{op} \cong \mathcal{A}_{11}$, $(A-12)^{op} \cong \mathcal{A}_{12}$, $(A-13)^{op} \cong \mathcal{A}_{\overline{13}}$, $(A-14)^{op} \cong \mathcal{A}_{\overline{14}}$, $(A-15)^{op} \cong \mathcal{A}_{\overline{15}}$, $(A-16)^{op} \cong \mathcal{A}_{\overline{16}}$, $(A-17)^{op} \cong \mathcal{A}_{17}$, $(A-18)^{op} \cong \mathcal{A}_{18}$, $(A-19)^{op} \cong \mathcal{A}_{19}$, $(A-20)^{op} \cong \mathcal{A}_{20}$, $(A-21)^{op} \cong \mathcal{A}_{\overline{21}}$, $(A-22)^{op} \cong \mathcal{A}_{\overline{22}}$, $(A-23)^{op} \cong \mathcal{A}_{\overline{23}}$, $(A-24)^{op} \cong \mathcal{A}_{\overline{24}}$.

Итак, имеется взаимно однозначное соответствие между указанными выше 47-ю нижними подмножествами и 47-ю ч. у. множествами. Теорема для S=A доказана.

Случай S=B рассматривается аналогичным образом (при этом мы пользуемся теми же обозначениями, но естественно с заменой A на B в соответствующих местах). В этом случае также имеем 47 нижних подмножеств (которые из-за наличия родственных нижних подмножеств занумеруем несколько иначе, чем в случае S=A): $B_1=\varnothing$, $B_2=\{1\}$, $B_3=\{2\}$, $B_4=\{4\}$, $B_5=\{1,2\}$, $B_6=\{1,4\}$, $B_7=\{2,3\}$, $B_8=\{2,4\}$, $B_9=\{4,5\}$, $B_{10}=\{1,2,3\}$, $B_{11}=\{1,2,4\}$, $B_{12}=\{1,4,5\}$, $B_{13}=\{2,3,4\}$, $B_{14}=\{2,4,5\}$, $B_{15}=\{4,5,6\}$, $B_{16}=\{1,2,3,4\}$, $B_{17}=\{1,2,4,5\}$, $B_{18}=\{1,4,5,6\}$, $B_{19}=\{2,3,4,5\}$, $B_{20}=\{2,4,5,6\}$, $B_{21}=\{4,5,6,7\}$, $B_{22}=\{1,2,3,4,5\}$, $B_{23}=\{1,2,4,5,6\}$, $B_{24}=\{1,4,5,6,7\}$, $B_{25}=B_{\overline{24}}=\{2,3,4,5,6\}$, $B_{26}=B_{\overline{23}}=\{2,4,5,6,7\}$, $B_{27}=B_{\overline{22}}=\{4,5,6,7,8\}$, $B_{28}=B_{\overline{2}}$, $B_{29}=B_{\overline{3}},\ldots,B_{47}=B_{\overline{21}}$.

Аналогично случаю S=A, исходя из таблицы 2 мы имеем 47 попарно неизоморфных ч. у множеств (24 указаны в таблице и 23 двойственные к ним), т. е. ровно столько, сколько имеется нижних подмножеств. Укажем, какое нижнее подмножество соответствует каждому из ч. у множеств.

Легко убедиться непосредственной проверкой в том, что B-1 \cong $\mathcal{B}_1 = B$, B-2 \cong \mathcal{B}_2 , B-3 \cong \mathcal{B}_3 , B-4 \cong \mathcal{B}_4 , B-5 \cong $\mathcal{B}_{\overline{5}}$, B-6 \cong \mathcal{B}_6 , B-7 \cong \mathcal{B}_7 , B-8 \cong \mathcal{B}_8 , B-9 \cong \mathcal{B}_9 , B-10 \cong $\mathcal{B}_{\overline{10}}$, B-11 \cong $\mathcal{B}_{\overline{11}}$, B-12 \cong \mathcal{B}_{12} , B-13 \cong \mathcal{B}_{13} , B-14 \cong \mathcal{B}_{14} , B-15 \cong \mathcal{B}_{15} , B-16 \cong $\mathcal{B}_{\overline{16}}$, B-17 \cong $\mathcal{B}_{\overline{17}}$, B-18 \cong $\mathcal{B}_{\overline{18}}$, B-19 \cong \mathcal{B}_{19} , B-20 \cong \mathcal{B}_{20} , B-21 \cong \mathcal{B}_{21} , B-22 \cong \mathcal{B}_{25} , B-23 \cong \mathcal{B}_{26} , B-24 \cong \mathcal{B}_{27} .

Далее, в силу равенства (*) имеем: $(B-2)^{op} \cong \mathcal{B}_{\overline{2}}$, $(B-3)^{op} \cong \mathcal{B}_{\overline{3}}$, $(B-4)^{op} \cong \mathcal{B}_{\overline{4}}$, $(B-5)^{op} \cong \mathcal{B}_{5}$, $(B-6)^{op} \cong \mathcal{B}_{\overline{6}}$, $(B-7)^{op} \cong \mathcal{B}_{\overline{7}}$, $(B-8)^{op} \cong \mathcal{B}_{\overline{8}}$, $(B-9)^{op} \cong \mathcal{B}_{\overline{9}}$, $(B-10)^{op} \cong \mathcal{B}_{10}$, $(B-11)^{op} \cong \mathcal{B}_{11}$, $(B-12)^{op} \cong \mathcal{B}_{\overline{12}}$, $(B-13)^{op} \cong \mathcal{B}_{\overline{13}}$, $(B-14)^{op} \cong \mathcal{B}_{\overline{14}}$, $(B-15)^{op} \cong \mathcal{B}_{\overline{15}}$, $(B-16)^{op} \cong \mathcal{B}_{16}$, $(B-17)^{op} \cong \mathcal{B}_{17}$, $(B-18)^{op} \cong \mathcal{B}_{18}$, $(B-19)^{op} \cong \mathcal{B}_{\overline{19}}$, $(B-20)^{op} \cong \mathcal{B}_{\overline{20}}$, $(B-21)^{op} \cong \mathcal{B}_{\overline{21}}$, $(B-22)^{op} \cong \mathcal{B}_{\overline{25}}$, $(B-23)^{op} \cong \mathcal{B}_{\overline{26}}$, $(B-24)^{op} \cong \mathcal{B}_{\overline{27}}$.

Итак, имеется взаимно однозначное соответствие между указанными выше 47-ю нижними подмножествами и 47-ю ч. у. множествами. Теорема для S=B доказана.

- **5.** Доказательство теоремы **1.** Теорема 1 вытекает непосредственно из доказательства теоремы 2.
- 1. *Клейнер М. М.* Частично упорядоченные множества конечного типа // Зап. науч. семинаров ЛОМИ. 1972. **28**. С. 32–41.
- 2. Дрозд Ю. А. Преобразования Кокстера и представления частично упорядоченных множеств // Функц. анализ и его прил. 1974. 8. C. 34–42.
- 3. *Бондаренко В. М., Степочкина М. В.* (Міп, тах)-эквивалентность частично упорядоченных множеств и квадратичная форма Титса // Проблеми аналізу і алгебри: Зб. праць Ін-ту математики НАН України. − 2005. − **2**, №3. − С. 18-58.
- 4. Bondarenko V. M. On (min, max)-equivalence of posets and applications to the Tits forms // Bull. of the University of Kiev (series: Physics & Mathematics). − 2005. − №1. − C. 24-25.
- 5. *Назарова Л. А.* Частично упорядоченные множества бесконечного типа // Изв. АН СССР. 1975. **39**, N5. С. 963–991.
- 6. *Бондаренко В. М., Степочкина М. В.* (Min, max)-эквивалентность частично упорядоченных множеств и неотрицательные формы Титса // Укр. мат. журнал. 2008, **60**, №9. С. 1157-1167.
- 7. *Бондаренко В. М., Степочкина М. В.* Описание частично упорядоченных множеств, критических относительно неотрицательности квадратичной формы Титса // Укр. мат. журнал. − 2009. − **61**, №5. − С. 734–746

Одержано 12.10.2011