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BOUNDARY-VALUE PROBLEMS FOR INTEGRAL EQUATIONS
WITH DEGENERATE KERNEL

V. E. Zhuravlev UDC 517.983

We consider boundary-value problems for integral equations with degenerate kernel. Using a pseudoin-
verse operator, we establish conditions for the existence of a unique solution of the original integral
equation and obtain a representation for this solution. We also establish conditions for the existence of a
solution of a boundary-value problem for this equation and obtain a representation of this solution. The
results are illustrated by examples.

The investigation of the solvability of linear boundary-value problems

(Lx)(@) = f(0), D

£x(’) = a, 2)

where L is a linear bounded operator and £ is a linear bounded functional, and the construction of their solutions
depend on the solvability of the original operator equation (1). In the case where the operator L is everywhere
solvable [1], solvability conditions and formulas for solutions were obtained for many boundary-value problems
[2-4]. However, there are many boundary-value problems of the form (1), (2) in which the operator L is not
everywhere solvable. Integral equations with degenerate kernel belong to problems of exactly this type. The
integral operator that determines the original equation is a Fredholm operator [5, 6] with nonzero kernel. This
means that the operator does not have an inverse, and the original equation is solvable not for any right-hand side
[1]. The noninvertibility of the original operator substantially complicates the investigation of these boundary-value
problems.

The methods of generalized inversion and pseudoinversion of Fredholm and Noetherian operators [4, 7] enable
one to solve this problem. We use these methods to find a solvability criterion and construct solutions for normally
solvable operator equations and boundary-value problems in the case where the operator L of the original equation
is a Fredholm operator with nonzero kernel.

Statement of the Problem

Consider the linear boundary-value problem

(Lx)(t) = f(t), 1€]a.b], 3)

Z)C () =, (4)
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where L:LJ[a,b] — L} [a, b] is the integral operator of the second kind with the degenerate kernel

b
(Lx)(t) =x(t) — V() / D(s)x(s)ds 5)

and £ = col({1,{2,....4g):L0[a,b] — RF is a k-dimensional vector functional acting from the space of
functions L7 [a, b] square summable on the segment [a, b] into the k-dimensional vector space R¥. The columns
of the n x m matrix W(¢), the rows of the m x n matrix ®(¢), and the vectors x(¢) and f(z) belong to the
Hilbert space L7 [a, b]. We pose the following problem: Find conditions for the solvability of the operator equation
(3) and boundary-value problem (3), (4) and determine representations for their solutions by using the operator LT
pseudoinverse to L.

Preliminary Information

It is known [5] that the integral operator (5) is a Fredholm operator (dim N(L) = dim N(L*) = s < 00). We
now present, in the general form, one of methods for the construction of an operator pseudoinverse to a Fredholm
operator acting from a real Hilbert space H; into a real Hilbert space H».

Let

b

(x1(), x2(2)) = /xf(t)xz(t) dt

a

be the scalar product of an n-dimensional vector column x;(¢) and an n-dimensional vector column x»(¢) in
the space Hj, where * denotes transposition. We define the scalar product of an n x r matrix X(¢) and an
n-dimensional vector column x(¢) by the formula

b

(X(0), x(0) = / X*()x(0) dr:

a

as a result, one obtains an r-dimensional column vector of constants. The scalar product of an n x m matrix X(z)
and an n x m matrix Y(¢) is defined by the formula

b

(X(0). Y (1) = / X* ()Y (1) dr:

a

as a result, one obtains a constant m X m matrix.

Let {fi};_, be a basis of the null space N(L) of the operator L and let {¢; }j=1 be a basis of the null
space N(L*) of the operator L* adjointto L. Using the basis vectors of the null spaces N(L) and N(L*), we
compose the n x s matrices

X(@) = (/1(0), f2(0). ... fs(D)),

Y(t) = (‘pl(t)’ §02(t)v B ‘PS(Z))*
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Using relations (3.4) [4, p. 62], we construct orthoprojectors Py (r):Hy — N(L) and Py(r«):Hy — N(L¥)
as follows:

(Pnyx) (@) = X))~ (X*(1), x(t))n, , (6)

(Pn@oy)(@) = Y(OB (Y (1), y(0))m,, )

where (-,-)g, and (-,-)m, denote the scalar products in the spaces H; and H,, respectively, and a~ ! and B!
are the matrices inverse to the symmetric Gram matrices

o= (X*(). X(1)u, and B = (Y1), Y()n.

If the bases of the null spaces N(L) and N(L*) are orthonormal, then « and S are identity matrices.
Consider the operators

(Pn+yx) (@) = Yo HX* (1), x(t)u,, Py Hi — N(L¥),
(8)
(Pnyy) (@) = XOB Y (). y(t)us. Prcry: Ha — N(L).

The operator ﬁN( L*) is an extension (to the space Hj) of an operator that realizes an isomorphism of N (L)
onto N(L*). The operator Py, is an extension of the inverse of the isomorphic operator to the space Hj.

Lemma 1. The operator L = L + FN(L*) has a bounded inverse L™!.

The lemma is proved by analogy with the lemma presented in [4].
Using Lemma 1, we prove the following statement:

Theorem 1. The operator

Lt =L~ Py, ©)
is a bounded pseudoinverse of the bounded Fredholm operator L.

The proof of the theorem reduces to the verification of the relations that define a unique pseudoinverse opera-
tor [7].

Relation (9), which gives a representation of the unique pseudoinverse of a Fredholm operator in a Hilbert
space, enables one to find solvability conditions and obtain a representation of a general solution for an integral
equation of the second kind with degenerate kernel.

A Criterion for Solvability of Integral Equations with Degenerate Kernel.
An Operator Pseudoinverse to an Integral Operator

Assume that the homogeneous equation

b
(Lx)(t) =x()—¥() / D(s)x(s)ds =0 10)



416 V. F. ZHURAVLEV

has nontrivial solutions, i.e., that Eq. (3) is not everywhere solvable [1]. Let us find conditions for the solvability
of Eq. (3) and the general form of its solution under the assumptions made above.

For the construction of an operator pseudoinverse to the integral operator L, we construct bases of the kernels
N(L) and N(L*) of the operators L and L*, respectively. To this end, we determine general solutions of the
homogeneous equation (10) and its conjugate equation

b
(L*y)(t) = y(1) — <I>*(t)f‘P*(S)y(S) ds = 0. (11

Let us find bases of the null spaces of the operators L and L*. For this purpose, it is necessary to solve the
homogeneous equations (10) and (11). We seek a solution of these equations in the form

x(t) =¥(t)c,
12)
y(t) = @*(1)d,
where ¢ = col[c1,¢2,...,cm] and d = col[dy,d>, ..., dny].
Substituting (12) into (10) and (11), respectively, we obtain the following algebraic system for ¢ and d :
Dc=0,
(13)
D*d =0,
where D = A—E (D* = A* — E) and
b

A =/CI>(I)\IJ(I) dt

a

is a constant m X m matrix.

Let Pyp):R™ — N(D) and Py(p=):R™ — N(D*) be orthoprojectors [4] to the null spaces N(D) and
N(D*) of the matrices D and D*, respectively.

The algebraic system (13) has nonzero solutions if and only if Pxy(p) # 0, which necessarily yields
Prn(p*) # 0. These conditions are equivalent to the condition that det D = 0, which is assumed in what follows.

Let rank D = m —r (rank D* = m —r). Then each of the m x m matrix orthoprojectors Py(p) and
Py (p+) has r linearly independent columns. Using these columns, we construct the n x r matrices Py, (p) and
Py, (D*), respectively.

With the use of these matrices, the general solutions of system (13) can be represented in the form [4]

¢ = Py, (pycr,
(14)
d = PN, (p+dr,

where ¢, € R” and d, € R” are arbitrary r-dimensional constant vectors.
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Substituting (14) into (12), we obtain the general solutions of the homogeneous integral equations (10) and

(11):

x(t) = Xr(t)er,

y(t) = Yr(z)dr’
where X, (1) = W(¢)Py,(p) and Y, (t) = ®*(¢) Py, (p*) are n x r fundamental matrices whose columns form

bases of the null spaces N(L) and N(L*) of the operators L and L*.
Using relations (7) and (8), we construct an orthoprojector Pp(z+) and operators Py(r) and Pp(r):

b
(PNy)0) =Y (1) / YA(s)y(s)ds,  Pyw:Lila,b] > N(L),

b
(PnoX)(t) = Yr(H)a™! / X} (s)x(s)ds, Pyr:Lila,b] — N(L*),

a

b
Py (@) = X, (0! / Y(s)y(s)ds. Py Lila.b] — N(L).

Here, o~ ! and B~! are the matrices inverse to the 7 x r symmetric Gram matrices

b b

o :/X,*(t)X,(z)dt and p :/Y,*(t)Y,(t)dt.

a

Then, by virtue of Lemma 1, the operator

b b
(L + Pyo) x(t) = x(t) — V(1) / O(s)x(s)ds + Yr(t)p! / X*(s)x(s) ds

has a bounded inverse, i.e., the integral equation

(IL + Py@=lx) (1) = f(@) (15)

is solvable for any right-hand side.
To find a solution of this equation, we rewrite (15) in the form

b
(L)1) = [(L + Py)x](0) = x(1) — 1.(1) / O} (5)x(s)ds = f(1). (16)
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where Wi (t) = [¥(¢), =Y, (t)a™'] is the n x (m + r) matrix composed of the matrices W(¢) and —Y,(t)a™!,
and ®1(t) = [®*(¢), X,(¢)] is the n x (m + r) matrix composed of the matrices ®(z) and X (¢).
Following [5], we can represent a solution of Eq. (16) in the form

b
x(0) = (L + Py )0) = f(0) + Wy ()M~ / BT (s) f(s) ds. (17

where M~ isan (m + r) x (m + r) matrix inverse to the matrix M = [ — B, where

b

B :/@‘{‘(z)%(r)dr.

a

Then, by virtue of Theorem 1, the pseudoinverse of the operator L has the form

(LT 1)) = (L + Pyw+) ™" = Pnw) )(@)

b b
— fO+noM ! [ 010 76 ds - X0 [ 176 /() ds (1)

Using the properties of the constructed pseudoinverse operator L+ and the fact that the orthoprojectors Prn(L)
and Pp(r+) induce a decomposition of the Hilbert space Lj[a, b] into direct sums of mutually orthogonal sub-
spaces LO[a,b] = N(L)® R(L*) and L[a,b] = N(L*)@® R(L), one can easily prove the following statement:

Theorem 2. Let rank D = m —r, r # 0. Then the integral Fredholm equation with degenerate kernel (3)
is solvable for those and only those f(t) € L[a,b] for which

b
Py f)() = Yr(t)p™! [ Y ()/(s)ds = O; (19)

in this case, it has an r-parameter family of solutions of the form
xX(1) = Xr(er + (LT )0, (20)
where the first term is a general solution of the corresponding homogeneous equation, the second term (LT f)(t)

is the unique particular solution (18) of Eq. (3) orthogonal to any solution of the homogeneous equation (10), and
cr € R" is an arbitrary r-dimensional column vector of constants.

In what follows, we represent solutions of Eq. (3), if they exist, in the form

b
x(@)=Xr(t)er + f(t) + W2(2) / @3 (s) f(s)ds, 21
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where Wy (1) = [¥1(1)M 1, =X, (1)B~1] is the n x (m + 2r) matrix composed of the matrices W (1)M ~! and
Xp ()7L, and ®,(t) = [®1(t), Y, (2)] is the n x (m + 2r) matrix composed of the matrices ®1(¢) and Y (¢).

By virtue of the linear independence of columns of the matrix Y, ()8!, the solvability condition (19) is
equivalent to the following:

b

/ Y *(s) f(s) ds = .

a

Linear Boundary-Value Problems for Integral Equations of the Second Kind with Degenerate Kernel

Let us find solutions of Eq. (3) that satisfy the boundary conditions (4).
Consider problem (3), (4) under the assumption that the corresponding homogeneous boundary-value problem

(Lx)(1) =0,
(22)
€x() =0

has nontrivial solutions. Under the conditions of Theorem 2, Eq. (3) has solutions that satisfy conditions (4) if and
only if the algebraic system

b
0y = a— L1 FO) + () / B3(5) f(s) ds L. 23)

which is obtained by the substitution of solution (21) of the integral equation (3) into the integral equations (4), is
solvable with respect to ¢,. Here, Q = £X,(-) is a constant k X r matrix.

Let Q% be the unique r x k matrix pseudoinverse to Q [4, 7], let Pyn(0):R" — N(Q) bean r xr matrix
orthoprojector, and let Py (p+): R¥ — N(Q*) be a k x k matrix orthoprojector.

Let Py, (g) denote a k x p matrix whose columns are p linearly independent columns of the matrix Py (g)
(0 =k —ny,ny =rank Q) andlet Py, p+) bea d x r matrix whose rows are d linearly independent rows of
the matrix Py(o+) (d =r —ny).

The algebraic system (23) is solvable if and only if the following condition satisfied [2, 4]:

b
Pnaox o —Lf0) +\Ifz(-)/<1>;(s)f(s) ds]y = 0;

in this case, it has the p-parameter family of solutions

b
cr = Pn,(0)Cp — Ot la—L| f()+ Wa() [ O3(s)f(s)ds | ¢, cp€ER”. (24)
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Substituting (24) into the general solution (21) of Eq. (3), we obtain the general solution of the boundary-value
problem (3), (4):

b
x(0) = X, () Py 0ycp + Xe ()0 o — X, (00T | £ + Wa() / 3() /(s) ds
b
LA+ W) / 3(5) /(s) ds

b
= Xp(t)cp + f(1) + Xr () QT o — £f O] + [W2 (1) — X, (1) QL W2()] / 3(s) f(s)ds.

Thus, the following statement is true:

Theorem 3. Let rank O = ny < min(k,r). Then the homogeneous (f(t) = 0) boundary-value problem
(22) corresponding to (3), (4) has exactly p = r —ny linearly independent solutions.

The inhomogeneous boundary-value problem (3), (4) is solvable for those and only those f(t) and o for
which the following r 4+ d linearly independent conditions are satisfied:

b

/ Y (s)f(s)ds =0,

a

b
Py,o%) o —¢ f(')+‘1’2(')[d>§(s)f(s)ds =0;

in this case, it has the p-parameter family of solutions
b
£(0) = Xp(0p + 70 + B2 [ 036751 ds,
a

where X,(t) = X, (t) PN, (@) isthe n X p fundamental matrix of the boundary-value problem (3), (4), 7)) =
fO) =X, () QTLf(), and Wa(t) = Wa(t) — X, (1) QTLW2(-).

Let rank Q = r. Then it is necessary that the inequality k < r be true. In this case, the boundary-value
problem (3), (4) is overdetermined, and the following theorem holds for it:

Theorem 4. Let rank Q = r. Then the homogeneous boundary-value problem (22) corresponding to (3), (4)
does not have solutions other than the trivial solution.

The inhomogeneous boundary-value problem (3), (4) is solvable for those and only those f(t) and o that
satisfy the following r + d linearly independent conditions:
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b

/ Y (s)f(s)ds =0,

a

b
Pygox ya—¢ f(-)+‘lfz(-)/<b§(s)f(s)ds =0, d=k—r:

in this case, it has the unique solution
b
x0) = 70 + B2 [ 036071 ds,
a

where f(t) = f(1) = X, ()QFEf () and Wa(t) = Wa(t) — X, (1) QT LW ().

Indeed, since rank Q = r, we have Py(g) = Pn,(0) =0 and X,(¢) = X-(¢) Py,(0) =0, and Theorem 4
follows from Theorem 3.

Let rank Q = k. Then k > r. In this case, the boundary-value problem (3), (4) is underdetermined, and the
following theorem holds for it:

Theorem 5. Let rank Q = k. Then the homogeneous boundary-value problem (22) corresponding to (3), (4)
has exactly p = r —k linearly independent solutions.

The inhomogeneous boundary-value problem (3), (4) is solvable for those and only those f(t) that satisfy the
following r linearly independent conditions:

b

[ v ds =0

a

in this case, it has the p-parameter family of solutions

b
x(1) = Xp(t)ep + [ (1) + Wa(t) / D3 () f(s) ds,

where Xp(t) = Xr(t) PN, (@) is an n x p fundamental matrix, () = ft) — X ()QTLf (), and V(1) =
Wa (1) — Xr (1) QLW ().

Since rank Q = k, we have Py(o+) = Pn,(0*) = 0, and Theorem 3 yields Theorem 5.
In the case of the periodic boundary-value problem (3), (4), the following statement is true:

Theorem 6. Suppose that the elements of the column vector f(t) and matrices ®(t) and V(t) are functions
periodicin T and rank Q = ny < min(k, r). Then the homogeneous boundary-value problem corresponding to
(3), (4) has exactly p = r —ny linearly independent periodic solutions.

The inhomogeneous boundary-value problem (3), (4) has periodic solutions for those and only those f(t)
that satisfy the following conditions:
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T

/ Y (s)f(s)ds =0,

0

T
PNy(0") ﬂm—fUW+Wﬂ®—%UW/®awﬂww _o;
0

in this case, it has the p-parameter family of periodic solutions
T
X0 = X000+ F0) + Ba(0) [ @505 15)ds,
0
where X,(t) = X, (1) PN, () is an n x p fundamental matrix, @) = f@t) = X,()OT[f(0) — f(T)], and
Wa(t) = Wa(t) — X, () QT [W2(0) — Wa(T)).
Example 1. As an illustration of the algorithm proposed above for the construction of solutions of linear

boundary-value problems for integral Fredholm equations of the second kind, we consider the boundary-value
problem

00 r—1)\ =2 2
@mm=xm—< )] L0 | x(s)ds = £, 25)
1o 0 0 3s
Y
2
€x() = x(0)—x(2) =0, (26)

where x(¢) = col (x1(7), x2(¢)) and f(t) = col (f1(¢), f2(t)) belong to the space L3[0,2], ¢ € [0,2].
The operator L* adjoint to the operator L has the form

3t 0 1

* 2
(L*y)(t) = y(t) - 1 / 0 0 |y ds.
t=5 00 0 \s—1 0

Let us determine bases of the kernels ker L and ker L* of the operators L and L*. To this end, we solve
the homogeneous equations
(Lx)(t) =0,
27
(L*y)(t) = 0.
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‘We seek solutions in the form
0 0 r—1
x([) = c,
1 0 0
3 (28)
0 1 —
2
y() = | d.
t—— 0 O
2
Substituting (28) into (27), we obtain the following algebraic systems for ¢ € R3 and d € R3:
(E—A)c=0,
(29)
(E—A%)d =0,
where
3t
’ 0 1 0 1 = 1 00
A= / 0 0 dt=)] 0 0 O
1
©\i-10 t—5 00 0 0 1
Then
0 0O
D=D*=]1 010
0 0O
and
1 00
PN(D) = PN(D*) = 0 00
0 0 1
Since rank D =1, r =2, and
1 0
Pn,py = Pn,py=1| 0 O |,
0 1

the solutions of the algebraic equations (29) have the form

¢ = Pn.(pycr, ¢r € R?,

d= PN,(D*)drv dy € RZ.
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Correspondingly, the general solutions of Egs. (27) can be written as follows:

0 r—1
x(t) = Xp(t)er = ( ) Cr,
1

0
3¢
0 >
2
y(@) =Y (t)d, = | dr,
t——= 0
2
where
0 | 3¢
0 0 r—1 B3
X, (1) = Pyn.p). Yr(t) = Py, (D*)-
1 0 0 1
tr—— 0 0
2

Thus, the columns of the matrices X, (¢) and Y, (¢) form bases of the null spaces N(L) and N(L*) of the
operators L and L*, respectively.
Using relations (7) and (8), we construct the operators

0 ! 2 0 !
(P )(@) ) B (s)d
NLHYI) = / y(s)as,
@ 6t —3 K 3s 0
7 2
0 ot 5
_ 4 0 1
(Pn@+x)(t) = / x(s)ds,
2t —1 s—1 0
0 0
4
t—1 1
0o — 2 0 s—=
_ 6 2
(Pry»)(0) = / y(s) ds.
6 3s
= 0 0 — 0
7 2
The operator (Lx)(t) = (L + ﬁN(L*))x(t) has the form
9t 3 *
0 0 r—1 0 7 2 0 1 ) 0 s—1
(Lx)(t) = x(t) — / x(s)ds.
=2t + 1 1
1 0 O 0 Jo s—= 0 0 1 0
4 2
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Using relation (17), we construct the operator L ~! inverse to L:

Ot 3 *
00 r—1 0 s of 0 1 2 0 s—1
L )0 = f0) - M- / £(5) ds.
21 41 1
10 0 0 o\ls—— 0 0 1 o0
4 2
where
9 1
(20 0 — o)
23 2
1
0 1 —= 0 0
2
_ 5 3
M7t=| 0o 0o = o -:
12 2
12
20 00 0 0
23
0 0 L o o
\ 3 )

Then, following (18), we rewrite the operator L™ in the form

(LT )@ = (L7 = Py (@)

-2t +5 =3 —1 1—1¢
0 + ( ) 0
12 2 6
= f@t) —
—6(t —2) 1 —6
— 0 0 —— 0 — 0
23 2 7
*
2 0 1 — 0 s—1 0 3—S
2 2
X / f(s)ds. 30)
s—1 1
0 0 0 1 0 s——= 0
2 2
Under the condition
t s—1
0 —
i I
(Prn (1) = / f(s)ds =0, G31)
6t —3 3s
R 0 il 0
7 2

the general solution of Eq. (25) has the form
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0 r—1
x(1) = Xr(Der + (L)1) = ( ) o+ (LY )W), ¢ €R?,
1 0

where (LT f)(t) admits representation (30).

Taking into account that f(¢) = col (f1(¢), f2(¢)), we can rewrite condition (31) in the following simpler
form:

s—1 s—1
/2 0 (ﬁ(s)) F 2 W
ds=/ ds = 0.
U f2(s)

) 0 0 37sfl(s)

We now establish conditions for the solvability of the boundary-value problem (23), (25) and determine the
general form of its solution.

Substituting the general solution of the integral equation (25) into the boundary conditions (26), we obtain the
algebraic equation

Qcr = —(LT f)(0) + (LT f)(2) (32)

for the determination of the constant c,.
For this problem, we have

Il
P

0 -2 0 0
Q=Xr(0)_Xr(2)= ( )» Q+
0 0

10 0 0
Prno) = 0 0] Pno+) = 0 1]

Since rank Q =1 and p = 1, we get

1
PNp(Q):<O) and  Py,0v = (0 1).

Equation (32) is solvable under the condition

Py, o0 {f(0) = f(2) + (LY /)(0) — (LT f)(2)} = 0,

which, with regard for the fact that

Py, o5 =(0 1) and  f(t) = col(f1(2). /(1))
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takes the form

1
0050300

f1(0) f1(2)
(0 1) - +
12(0) 12(2) 2 00000 0

23
3s 35\ *
2 1 = -1 >
0 y Vs 05 fi(s)
x/ dsy =0
—1 —1
o\ 2 00 1 0 — 0 /2(9)
2 2
After transformations, we obtain
; 2
20 - L@+ 31 [6-Dh6)ds ()

0
Under condition (33), Eq. (32) has solutions of the form

0020300
1 N 3
Cr:( )Cp_Q J0) =) +

0 12
— 0 0 0 0 00
23
35 \ *
2 0 I — 0 s—1 0 —
2 2 ;
X f(s)dsy, cpeR.
s—1 1
0 0o 01 0 s—= 0
2 2

Thus, problem (25), (26) is solvable under conditions (31) and (33) and has the following general solution:

1—1¢

0 — 0
X(f)=<l)cp+ 2 {fO)—f@}+ f(0)
0 0
1 1—1¢
0 0 " 0 0 0 <
+
6(2—1) 00 0 3(1—1) —_6 0
23 2 7
3 35\ *
2 0 1 — 0 s—1 0 )
x/ o 1 f(s)ds
0 0 0 1 0 s—= 0
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Example 2. Consider the boundary-value problem for Eq. (25) with the boundary conditions

1

0 -
2

2
3t
£x () =/ o) 0 | x@®)dt =a. (34)
0

o L

2

The boundary-value problem (25), (34) is overdetermined. We seek its solution using Theorem 4.
Substituting the solution of Eq.(25) into the boundary conditions (34), we obtain the following algebraic
equation for ¢;:

0c, = a— LY ()

1

0 3 3 35 0\ *
2 2f 0 1 2 0 s-1 o =
3s 2 2
=a-— = 0 | fs)ds—2 f(s)yds, (35
2 s—1 1
0 0 0O 0 1 0 s—— 0
K} 2 2
0 _
2
where
1
0 —
5 2
E 0 1 0
0
t
2
1
0 3 2t +5 3(t — 1 1—¢
2 0 0o F Sezb o, 1t
31 12 2 6
O A 1
2 —6(1 —2) 1 -6
0 0 0 - 0 — 0
t 23 2 7
() _
2
( 6 1 6
— 0 0 ——= 0 —— 0
23 2 7
7 3
= 0 0 — 0 —-- 0 -=
12 3
4 1 6
—— 0 0 —= 0 — 0
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For this boundary-value problem, we have

1 0 1 0 1
Q — 0 1 , Q+ — 2 2 ,
1 0 0 1 0
1 0 -1
1
P =0. Pnos=5| 0 0 0
-1 0 1

Since rank Q = 2 and p = 2, we have

1
PNp(Q)ZO and PNd(Q*)zi(l 0 —1).

Equation (35) is solvable under the condition

2
Prsion da— | £O +W0) / 3(s) f(s) ds
0

which, with regard for the fact that

Pn,0%) = %(1 0 —1), f@t)=col(fi(t), f2(t)), and « = col (1,02, a3),
takes the form
1
(03} 2 0 5
1o -1 e —/ 3 (fl(s) ) ds
o I f2(s)
3 0o

6 1 6 \
— 0 0 — 0 — 0
23 2 7
7 3 2
-l o o= o -2 o -Z
12 2 3
4 6
—53 0 0 -3 0 — 0
23 7
0 1 X% 0s-1 0o =
2

429
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After transformations, we get

2
1
o1 —as + 4—2 / (s — 1) fals) ds = 0. 36)
0

Under condition (36), Eq. (35) has a unique solution of the form

1
0 Py *
2 3s 3s
2 2 O 1 E 0 S—l O ?
¢ =0+ a —/ 20 | ferds- %/ 1 1 F(5)ds
0 o\ 2 001 0 s—— 0
0 K} 2 2

Thus, the boundary-value problem (25), (34) is solvable under conditions (31) and (36) and has a unique solution
of the form

1
0 3
0 -1 0 5
3s
x(t) = ] ! a—f = o | f(s)ds
- 0 = o 2
2 2 i
0 —
2
3 35\ *
2f 0 1 2 0 s-1 o =
2 2 .
A / 1 1 F(s)ds b + (LY ).
o\2=" 0 0 1 0 s—- 0
2 2

Example 3. Consider the boundary-value problem for Eq. (25) with the boundary conditions
tx()= (-1 2)x(0)+ (1 -2)x2)=«a, acR. (37)

The boundary-value problem (25), (37) is underdetermined. We seek its solution using Theorem 5.
Substituting the solution of Eq.(25) into the boundary conditions (37), we obtain the following algebraic
equation for ¢, :

2
Qcr =a—LLY f()=a— f -, / ? 1 fs)ds,  (38)
0

where

0=t(X,()=(-1 2)X 0+ (1 -2)X,2)=(0 2),
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=1 2)fO+ (1 -2)f2),

By = 0000 = (<1 2)w(O) + (1 —2)w(z)=(% 0 1o 2 _é)

For this boundary-value problem, we have

0 10

o' = . Pno) = . Pnin =0.
0 0

| =

Since rank Q =1, p=1, and d =0, we get

1

PNQ(Q) = 0 and PNd(Q*) =0.

Since Py, (p+) = 0, Eq.(38) is solvable for any right-hand side and has a one-parameter (c, € RY) family
of solutions of the form

3s 35\ *
2 0 I — 0 s—1 0 —
1 n - 2 2
cr = o+ O T qa—f -, f(s)ds
0 s—1 1
0 0o 01 0 s—= 0
2 2

Thus, the boundary-value problem (25), (37) is solvable under condition (31) and has a general solution of the form

t—1
o (s
x(t)= Cp+

1 L o

3 35 \ *
2( 0 1 Fo0s-1 0
x a—f—ifz[ 1 1 Fs)ds b+ @t ) ).
o\ 2 00 1 0 s—- 0
2 2
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