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GENERALIZATION OF THE SCHMIDT LEMMA TO THE CASE OF
n-NORMAL AND d-NORMAL OPERATORS IN A BANACH SPACE

V. F. Zhuravlev UDC 517.983

We generalize the known Schmidt lemma to the case of linear, bounded, normally solvable operators
that are n-normal or d -normal in infinite-dimensional Banach spaces. It is assumed that the kernels and
images of these operators have complements in these spaces.

The Schmidt lemma [1] is most completely studied and widely used for the generalized inversion of linear,
bounded, normally solvable Fredholm operators (with nonzero kernels) in the form of the so-called Schmidt con-
struction [2]. Its analog for Noetherian operators in finite-dimensional Banach and Hilbert spaces was considered
in [3].

The aim of the present paper is to prove statements that generalize the Schmidt lemma to the case of bounded
normally extendable operators that are n-normal or d -normal and act in infinite-dimensional Banach spaces.

Statement of the Problem

Let L be a linear, bounded, normally solvable operator that acts from a Banach space B1 into a Banach
space B2: Denote the dimensions of the null spaces of the operator L and its adjoint L� by dimN.L/ D �

and dimN.L�/ D �; respectively. According to S. Krein’s classification [4], a normally solvable operator L is
n-normal if � is finite and � is infinite, and it is d -normal if � is infinite and � is finite.

If LWB1 ! B2 is a linear bounded n-normal operator, then we assume that its image R.L/ has a complement
in the space B2 [5], i.e.,

B2 D Y ˚R.L/; (1)

and if LWB1 ! B2 is a linear bounded d -normal operator, then its kernel N.L/ has a complement in the space
B1; i.e.,

B1 D N.L/˚X: (2)

Main Result

First, we consider n-normal operators. By virtue of its finite dimensionality .� < 1/; the subspace N.L/
has a complete system of basis elements ffig

�
iD1 � N.L/; fi D col .f .1/i ; f

.2/
i ; f

.3/
i ; : : :/: Assume that the

space B2 has a basis. It is known [6, p. 131] that B�2 also has a basis. Therefore, the subspace N �.L/ � B�2 has
a complete system of basis elements (functionals) f's.�/g1sD1 � N.L

�/; 's.�/ D col .'.1/s .�/; '
.2/
s .�/; '

.3/
s .�/; : : :/:

For the elements ffig
�
iD1 and functionals f's.�/g1sD1; there exist an adjoint biorthogonal [7] system of function-

als fj .�/g
�
jD1 � B�1; j .�/ D col. .1/j .�/; 

.2/
j .�/; 

.3/
j .�/; : : :/; and an adjoint biorthogonal complete system of
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elements f kg1kD1 � B2;  k D col. .1/
k
;  

.2/

k
;  

.3/

k
; : : :/ : Note that, according to the Hahn–Banach theorem,

each functional fj .�/g
�
jD1 defined on the subspace N.L/ � B1 can be extended, with preservation of norm, to

the entire space B1:
Let

X D .f1; f2; : : : ; f�/; �.�/ D .1.�/; 2.�/; : : : ; �.�//
T

ˆ.�/ D .'1.�/; '2.�/; : : : ; 'k.�/; : : :/
T ; ‰ D . 1;  2; : : : ;  k; : : :/

(3)

denote, respectively, 1��; ��1; 1�1; and 1�1 matrices; furthermore, �.X/ D E� and ˆ.‰/ D E1;
where E� and E1 are the identity matrices.

We construct a projection operator PN.L/WB1 ! N.L/ according to the formula

PN.L/.�/ D X�.�/; PN.L/WB1 ! B1:

To construct a projection operator PY WB2 ! B2; we define the sequence of projectors

PY .j /.�/ D ‰j ĵ .�/ (4)

of the space B2 to the subspaces Yj � Y spanned by the elements f kg
j

kD1
:

Lemma 1. The sequence (4) of projectors PY .j / converges strongly (pointwise) to the projector

PY .�/ D ‰ˆ.�/ D lim
j!1

‰j ĵ .�/; PY WB2 ! Y;

where Y � B2 is an infinite-dimensional space spanned by the complete system of elements f sg1sD1:

Proof. According to the definition of strong convergence in the norm of the space B2; with regard for the
definition of the matrices ˆ and ‰ we get

kPY y � PYj
yk D


1X
�D1

'�.y/ � �

jX
�D1

'�.y/ �


D


1X

�DjC1

'�.y/ �

 �
1X

�DjC1

k'�.y/ �k 8y 2 Y � B2:

The quantity

1X
�DjC1

k'�.y/ �k

tends to zero as j !1 as a remainder of the expansion

1X
�D1

'�.y/ �
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of an element y 2 Y in the system of elements f �g1�D1: Since the functionals f'j .�/g1jD1 can be extended to
the entire space B2 with preservation of norm, we can conclude that

1X
�DjC1

k'�.y/ �k ! 0 as j !1

for any y 2 B2:
The lemma is proved.

Let us show that the constructed projectors divide the spaces B1 and B2 into mutually complementary sub-
spaces according to relations (1) and (2).

Lemma 2. The operators PN.L/ and PY are bounded projectors in the Banach spaces B1 and B2 and
divide these spaces into direct sums of closed subspaces according to relations (1) and (2).

Proof. First, we prove that the operators PN.L/ and PY are projectors, i.e., that they satisfy the conditions
P2
N.L/

D PN.L/ and P2Y D PY : Indeed, we have

P2N.L/.�/ D PN.L/.PN.L/.�// D X�.X�.�// D X�.X/�.�/ D X�.�/ D PN.L/.�/

because �.X/ D E�; and

P2Y .�/ D PY .PY .�// D ‰ˆ.‰ˆ.�// D ‰ˆ.‰/ˆ.�/ D ‰ˆ.y�/ D PY .�/

because ˆ.‰/ D E� :
Thus, the projectors PN.L/ and PY divide the spaces B1 and B2 into direct topological sums of closed

subspaces:

B1 D N.PN.L//˚R.PN.L//; B2 D N.PY /˚R.PY /:

Further, we show that

N.L/ D R.PN.L//; R.L/ D N.PY /;

Y D R.PY /; X D N.PN.L//:
(5)

Since LPN.L/x D LX�.x/ D 0; x 2 B1; we have R.PN.L// � N.L/: Let x 2 N.L/: Then x D Xc:

Applying the matrix of functionals � to the last equality, we get c D �.x/; i.e., x D X�.x/: Therefore,
x D PN.L/x and x 2 R.PN.L//: Thus, N.L/ � R.PN.L//; and the first equality in (5) is proved.

Since PYLx D ‰ˆ.Lz/ D ‰.L�ˆ/.z/ D 0 .'s are basis vectors of the null space of the operator L�/;
we have R.L/ � N.PY /: On the other hand, if y 2 N.PY /; then

PY y D ‰ˆ.y/ D 0;

i.e., 's.y/ D 0; s D 1; 2; : : : ;1: By virtue of the normal solvability of the operator L; this means that y 2
R.L/: Therefore, N.PY / � R.L/; and the proof of the second equality in (5) is completed.
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The third and the fourth equality in (5) are proved by analogy.
Thus, the projectors PN.L/ and PY divide the Banach spaces B1 and B2 into direct sums of closed sub-

spaces according to relations (1) and (2).
The boundedness of the projector PN.L/ follows from its finite dimensionality, and the boundedness of the

projector PY follows from the complementability of the image R.L/ of the operator L [8].
The lemma is proved.

Since the system of basis elements f'.�/sg�sD1 � B�2 of the null space N.L�/ and the system of elements
f sg

�
sD1 � Y � B2 are adjoint biorthogonal, 's. k/ D ısk; there exists a one-to-one correspondence between

them. Therefore, the subspaces N.L�/ and Y are isomorphic and have the same dimension: dimN.L�/ D

dimY: Since � is finite and � is infinite, we can establish an isomorphism between N.L/ and a certain subspace
Y1 � Y:

We now construct this isomorphism.
Let

ˆ.�/ D .'1.�/; '2.�/; : : : ; '�.�//
T and ‰ D . 1;  2; : : : ;  �/ (6)

denote, respectively, � �1 and 1� � matrices composed of � rows and columns of the matrices ˆ and ‰;

respectively. The matrix ‰ is composed of the system of elements f kg
�
kD1
� f kg

1
kD1

spanning the subspace
Y1: The matrix ˆ is composed of functionals f'sg

�
sD1 � f'sg

1
sD1 that satisfy the relation ˆ.‰/ D E�: We

construct a linear, bounded, invertible operator J WN.L/! Y1 � Y that performs an isomorphism of N.L/ onto
Y1 and its inverse J�1WY1 ! N.L/ according to the relations

J.�/ D ‰�.�/; .�/ 2 N.L/;

J�1.�/ D X ˆ.�/; .�/ 2 Y1:

By virtue of the Hahn–Banach theorem, each linear functional i can be extended to the entire space B1 with
preservation of norm, and each linear functional 's can be extended to the entire space B2: In this connection,
we denote the extension of the operator J WN.L/ ! Y to the entire space B1 by PY1

and the extension of its
inverse J�1 to the space B2 by PN.L/; i.e.,

PY1
.�/ D ‰�.�/; .�/ 2 B1;

PN.L/.�/ D Xˆ.�/; .�/ 2 B2:

Using (6), we define the projector PY1
WB2 ! Y1 � Y as follows:

PY1
.�/ D ‰ˆ.�/:

This operator divides the subspace Y into a direct topological sum of subspaces, namely,

Y D Y1 ˚ Y2; (7)

where Y2 D PY2
B2 D .PY � PY1

/B2; and is bounded.
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For the class of normally solvable n-normal operators, we prove the following statement, which is an analog
of the Schmidt lemma:

Lemma 3. Let LWB1 ! B2 be a linear bounded n-normal operator and let the image R.L/ have a com-
plement in the space B2: Then the operator L D LC PY1

has a bounded left-inverse operator:

L
�1

l0
D .LC PY1

/ �1l :

The general form of the left-inverse operators L
�1

l0
is given by the relation

L
�1

l0
D L

�1

l0
.IB2
� PY2

/:

Proof. Let L be an n-normal operator. For the operator L to be left invertible, it is necessary and sufficient
that the following conditions be satisfied [9]:

(a) kerL D f0gI

(b) the linear manifold R.L/ is a subspace that has a direct complement in B2:

Let us show that kerL D f0g: Assume that there exists x0 ¤ 0; x0 2 B1; such that

.LC PY1
/x0 D Lx0 C‰�.x0/ D 0:

It is obvious that Lx0 2 R.L/: It follows from the definition of PY1
that PY1

x0 2 Y1 � Y: Since the
subspaces R.L/ and Y mutually complement one another to the entire space B2; we have R.L/

T
Y D f0g;

i.e., they have only one common element, namely the zero element. Thus, Lx0 D 0 and PY1
x0 D 0: This

implies that x0 2 N.L/ and x0 2 N.PY1
/ � X: Since the subspaces N.L/ and X also mutually complement

one another to the space B1; we have N.L/
T
X D f0g: This yields x0 D 0:

The complementability of the image R.L/ in the space B2 follows from relation (7) and the complementabil-
ity of the subspace R.L/ :

B2 D R.L/˚ Y1 ˚ Y2 D R.L/˚ Y2: (8)

Therefore, the operator L has a left inverse. Since the operator L maps the Banach space B1 bijectively to
the subspace B2 	 Y2; it follows from the Banach theorem [10] that the operator L

�1

l is bounded. It is known
[9, p. 61] that if the projection operator P possesses the property R.P/ D R.L/; then the general form of left-
inverse operators admits the representation L

�1

l0
P : It follows from (8) that the operator IB2

� PY2
possesses

this property, i.e., R.IB2
� PY2

/ D R.L/: Therefore, the general representation of left-inverse operators can be
rewritten as follows:

L
�1

l0
D L

�1

l0
.IB2
� PY2

/:

The lemma is proved.

Remark 1. If dim kerL < dim kerL� < 1; i.e., L is a Noetherian operator of negative index, then
Lemma 3 reduces to Lemma 2.4 in [3, p. 47].
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Remark 2. If dim kerL D dim kerL� D n < 1; i.e., L is a Fredholm operator of nonzero index, then
Lemma 3 reduces to the Schmidt lemma [2, p. 340].

Now let LWB1 ! B2 be a linear bounded d -normal operator. In this case, the subspace N.L/ is infinite-
dimensional .� D 1/ and the subspace N.L�/ is finite-dimensional .� < 1/: Assume that the space B1 has
a basis. Then N.L/ also has a basis. Let ffig1iD1 � N.L/ be a complete system of basis elements. The subspace
N.L�/ has a finite-dimensional basis f'sg�sD1 � N.L�/: For the elements ffig1iD1 and functionals f'sg�sD1;
there exist an adjoint biorthogonal system of functionals fj g1jD1 � B�1 and an adjoint biorthogonal complete
system of elements f kg�kD1 � B2 [7]. Each of the functionals fj g1jD1 and f'sg�sD1 defined on the subspaces
N.L/ � B1 and Y � B2; according to the Hahn–Banach theorem, can be extended to the spaces B1 and B2;
respectively, with preservation of norm.

By analogy with (3), let

X D .f1; f2; : : : ; fs; : : :/; �.�/ D .1.�/; 2.�/; : : : ; s.�/; : : :/
T ;

ˆ.�/ D .'1.�/; '2.�/; : : : ; '�.�//
T ; ‰ D . 1;  2; : : : ;  �/

denote 1�1; 1�1; ��1; and 1�� matrices, respectively; furthermore, �.X/ D E1 and ˆ.‰/ D E� ;
where E1 and E� are the identity matrices.

To construct a projection operator PN.L/WB1 ! N.L/; we define the sequence of projectors

PN .i/.L/.�/ D Xi�i .�/; i D 1; 2; 3; : : : ; (9)

of the space B1 to the subspaces Ni .L/ of the null space N.L/:

Lemma 4. The sequence (9) of projectors PN .i/.L/ converges strongly (pointwise) to the projector

PN.L/.�/ D X�.�/ D lim
i!1

Xi�i .�/; PN.L/WB1 ! N.L/: (10)

Proof. The proof is analogous to the proof of Lemma 1.

We define a projection operator PY WB2 ! Y of the space B2 to the subspace Y as follows:

PY .�/ D ‰ˆ.�/ (11)

Note that, for the projection operators (10) and (11), Lemma 2 is true.
Since � is infinite and � is finite, we can establish an isomorphism between N1.L/ � N.L/ and Y:
We now construct this isomorphism. Let

X D .f 1; f 2; : : : ; f �/ and �.�/ D .1.�/; 2.�/; : : : ; �.�//
T (12)

denote, respectively, 1 � � and � � 1 matrices. Then we construct a linear, bounded, invertible operator
J WN1.L/! Y that realizes an isomorphism of N1.L/ onto Y and its inverse J�1WY ! N1.L/ as follows:

J.�/ D ‰�.�/; .�/ 2 N1.L/;

J�1.�/ D X ˆ.�/; .�/ 2 Y:
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The matrix X is composed of � columns of the matrix X; and the matrix �.�/ is composed of functionals of the
matrix �.�/ that satisfy the relation �.X/ D E� :

Let PY denote an extension of the operator J WN.L/ ! Y to the entire space B1 and let PN1.L/ denote
an extension of its inverse J�1 to the space B2; i.e.,

PY .�/ D ‰�.�/; .�/ 2 B1;

PN1.L/.�/ D Xˆ.�/; .�/ 2 B2:

By analogy with (11), we define the projection operator PN1.L/WB1 ! N1.L/ � N.L/ as follows:

PN1.L/.�/ D X �.�/: (13)

This operator is bounded and divides the subspace N.L/ into a direct topological sum of subspaces:

N.L/ D N1.L/˚N2.L/; N2.L/ D PN2.L/B1; (14)

where PN2.L/ D PN.L/ � PN1.L/ is a bounded projector.
For the class of normally solvable d -normal operators, we prove a statement analogous to the Schmidt lemma.

Lemma 5. Let LWB1 ! B2 be a linear bounded d -normal operator and let the kernel N.L/ have a
complement in the space B1: Then the operator L D LC PY has a bounded right-inverse operator:

L
�1

r0
D .LC PY /�1r :

The general form of the right-inverse operators L
�1

r0
is given by the relation

L
�1

r0
D .IB1

� PN2.L//L
�1

r :

Proof. For the operator L to be right invertible, it is necessary and sufficient that the following conditions be
satisfied [9]:

(a) R.L/ D B2I

(b) the subspace N.L/ has a direct complement in B1:

Using the second equality in (5), we get R.L/ D N.PY /; i.e., the condition R.L/ D B2 is equivalent to the
condition

PY .�/ D ‰ˆ.�/ D 0:

Since the system of elements f sg�sD1 is linearly independent, the last relation holds if and only if all elements
of f'sg�sD1 are equal to zero. This, in turn, means that the null space of the adjoint operator is trivial, i.e.,
N.L�/ D f0g:
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Let us show that N.L
�
/ D f0g: Assume that there exists a functional '0; '0 ¤ 0; ' 2 B�2; such that

L
�
'0 D .LC PY /�'0 D 0: Taking into account the definition of the operator PY ; we get

L�'0 D �P
�

Y '0:

Applying the functionals L�'0 2 B�1 and P �Y to the matrix X; we obtain, on the one hand,

.L�'0/.X/ D '0.LX/ D 0

because LX D 0 and, on the other hand,

P �Y '0.X/ D '0.PYX/ D '0.‰/�.X/ D '0.‰/

because �.X/ D ıij : Since the system of elements f ig�iD1 is linearly independent, the equality '0.‰/ D 0 is
possible only for '0 D 0: This contradiction proves that N.L

�
/ D f0g; which, in turn, means that R.L/ D B2:

The complementability of the null space N.L/ follows from the definition of the projector PN1.L/ (13) and
the decomposition (14) of the null space N.L/ of the operator L:

It is known [9, p. 62] that if a projection operator P possesses the property N.P/ D N.L/; then the general
form of right-inverse operators admits the representation P L�1r0

: It follows from (14) that the operator IB1
�

PN2.L/ possesses this property, i.e., N.IB1
� PN2.L// D N.L/: Therefore, the general representation of right-

inverse operators can be rewritten as follows:

L
�1

r0
D .IB1

� PN2.L//L
�1

r :

The lemma is proved.

Remark 3. If dim kerL� < dim kerL < 1; i.e., L is a Noetherian operator of positive index, then
Lemma 5 reduces to Lemma 2.4 in [3, p. 47].
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