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BOUNDARY-VALUE PROBLEMS FOR LINEAR EQUATIONS WITH A GENERALIZED
INVERTIBLE OPERATOR IN A BANACH SPACE WITH BASIS

V. F. Zhuravlev UDC 517.983

We consider linear boundary-value problems for operator equations with generalized invertible opera-
tors in Banach spaces that have bases. Using the technique of generalized inverse operators applied
to generalized invertible operators in Banach spaces, we establish conditions for the solvability of lin-
ear boundary-value problems for these operator equations and obtain formulas for the representation of
their solutions. We consider special cases of these boundary-value problems, namely, so-called n- and
d -normally solvable boundary-value problems as well as normally solvable problems for Noetherian op-
erator equations.

Statement of the Problem

Let l1.I;B1/ be the Banach space of bounded vector functions z.t/ defined on a finite interval I and
taking values in a certain Banach space B1; z.�/W I ! B1; with the norm

jjjf .t/jjj D sup
t2I
kf .t/kB1

and let l1.I;B2/ be the Banach space of bounded vector functions '.t/ defined on the same interval I and
taking values in a certain Banach space l1.I;B2/ with the norm

jjjf .t/jjj D sup
t2I
kf .t/kB2

:

Assume that L is a linear bounded generalized invertible operator that acts from the Banach space l1.I;B1/
into the Banach space l1.I;B2/; the spaces l1.I;B1/ and l1.I;B2/ have bases, and ` D col .l1; l2; l3; : : :/
is a linear bounded vector functional that acts from the Banach space l1.I;B1/ into the Banach space B:

It follows from the generalized invertibility of the operator L [1] that L is normally solvable .R.L/ is
closed), and the null space N.L/ and the image R.L/ are complementable in the Banach spaces l1.I;B1/
and l1.I;B2/; respectively. This means [2, 3] that there exist linear bounded projectors PN.L/W l1.I;B1/ !
N.L/ and PYL

W l1.I;B2/ ! YL that decompose the Banach spaces l1.I;B1/ and l1.I;B2/ into mutually
complementing subspaces, namely,

l1.I;B1/ D N.L/˚XL; l1.I;B2/ D YL ˚R.L/;

where YL is a subspace isomorphic to the null space N.L�/ of the operator L� adjoint to the operator L:
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In what follows, we denote the set of generalized invertible operators LW l1.I;B1/ ! l1.I;B2/ by
GI.l1.I;B1/; l1.I;B2//:

Since the Banach spaces l1.I;B1/ and l1.I;B2/ have bases, the null spaces N.L/ and N.L�/ also have
bases.

Let

ffig
1
iD1 � N.L/; fi D col.f .1/i ; f

.2/
i ; f

.3/
i ; : : :/;

and

f's.�/g
1
sD1 � N.L

�/; 's.�/ D col.'.1/s .�/; '.2/s .�/; '.3/s .�/; : : :/;

denote the bases of the null spaces N.L/ and N.L�/; respectively. For elements ffig1iD1 and functionals
f'sg

1
sD1; there exist an adjoint biorthogonal [4] total system of functionals fj g1jD1 � N �.L/ � l1.I;B1/�;

j .�/ D col . .1/j .�/; 
.2/
j .�/; 

.3/
j .�/; : : :/; and an adjoint biorthogonal compete system of elements f kg1kD1 �

l1.I;B2/;  k D col . .1/
k
;  

.2/

k
;  

.3/

k
; : : :/: According to the Hahn–Banach theorem, each of the function-

als fj g1jD1 defined on the subspace N.L/ � l1.I;B1/ can be extended to the entire space l1.I;B1/ with
preservation of norm, and each of the functionals f'sg1sD1 can be extended to the entire space l1.I;B2/:

Let X D .f1; f2; : : : ; fi ; : : :/; � .�/ D .1.�/; 2.�/; : : : ; j .�/; : : :/T ; ˚.�/ D .'1.�/; '2.�/; : : : ; 's.�/; : : :/T ;
and 	 D . 1;  2; : : : ;  k; : : :/ be .1;1/-dimensional matrix operators; here, � .X/ D E1; ˚.	/ D E1;

and E1 is the identity matrix.
Then the projectors PN.L/W l1.I;B1/ ! N.L/ and PYL

W l1.I;B2/ ! YL can be represented as follows
[5, pp. 168, 172]:

.PN.L/z/.t/ D X.t/.� z/.�/ 8z 2 l1.I;B1/;

.PYL
y/.t/ D 	.t/.˚y/.�/ 8y 2 l1.I;B2/:

(1)

We consider the problem of conditions for the solvability of the operator equation

.Liz/.t/ D '.t/ (2)

and the representation of its solutions that satisfy the conditions

.`z/.�/ D ˛; (3)

where ˛ 2 B:

Definition 1. The system of linear operator equations (1), (2) is called the linear inhomogeneous boundary-
value problem for Eq. (1), and the equations

.`z/.�/ D col ..l1z/.�/; .l2z/.�/; .l3z/.�/; : : : ; .liz/.�/; : : :/ D col .˛1; ˛2; ˛3; : : : ; ˛i ; : : :/

are called the boundary conditions of this problem.
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Intermediate Result

Consider the problem of conditions for the solvability of the operator equation

.Lz/.t/ D '.t/ (4)

and the general form of its solutions that satisfy the initial condition

z.t0/ D z0; (5)

where t0 2 I and z0 2 B1:

Definition 2. Problem (4), (5) is called the Cauchy problem for the inhomogeneous operator equation (4).

It is known [6] that the operator equation (4) is solvable for those and only those '.t/ 2 l1.I;B2/ that satisfy
the condition

.PYL
'/.t/ D 	.t/.˚'/.�/ D 0: (6)

Under condition (6), the general solution of Eq. (4) can be represented in the form [6]

z.t/ D .PN.L/ Oz/.t/C .L�'/.t/; (7)

where Oz.t/ is an arbitrary element of the space l1.I;B1/ and L� is the bounded generalized inverse of L; the
construction of which is described in [5–8] for operators L of various types.

Using representation (1) for the projector PN.L/; for every Qz.t/ 2 N.L/ we get

.PN.L/ Oz/.t/ D X.t/.� Oz/.�/ D X.t/ Oz0; (8)

where Oz0 D col ..1 Oz/.�/; .2 Oz/.�/; : : : ; .j Oz/.�/; : : :/ is an arbitrary column vector. It was shown in [9, p. 129]
that, with a properly chosen norm, the linear space whose elements are numerical sequences Oz0 for which equality
(8) holds is a Banach space. In what follows, we denote this Banach space by B�; where � is the (finite or
infinite) dimension of the kernel of the operator L:

Substituting (8) into (7), we obtain the following general solution of the operator equation (4):

z.t/ D X.t/ Oz0 C .L
�'/.t/: (9)

It follows from (8) that every element z.t/ of the null space N.L/ can be represented in the form

z.t/ D X.t/ Oz0:

This relation holds for any t 2 I; including t D t0: Therefore, for any z0 D z.t0/; there exists an element
Oz0 2 B� such that

z0 D X.t0/ Oz0;

where X.t0/WB� ! B1 is a linear bounded operator.
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The existence of the element Oz0 for any z0 D z.t0/ implies that the matrix equation

X.t0/ Oz0 D z0 (10)

is everywhere solvable, i.e., (a) N.X�.t0// D f0g; and, hence, the projector to the subspace YX.t0/ � B1 is
equal to zero, PYX.t0/

� 0 8t0 2 I; and (b) there exists the right inverse operator X�1r .t0/: Thus, the matrix
operator X.t0/ is d -normal .d D 0/ if dim kerX.t0/ D 1 or Noetherian if dim kerX.t0/ < 1 and X.t0/ is
a generalized invertible operator, i.e., X.t0/ 2 GI.B�;B1//:

Thus, the matrix operator equation

X.t0/ Oz0 D z0 � .L
�'/.t0/;

which is obtained from Eq. (9) for t D t0; is everywhere solvable, and its general solution has the form [5, p. 175]

Oz0 D PN.X.t0//z� CX
�1
r .t0/Œz0 � .L

�'/.t0/�; (11)

where PN.X.t0// is the projector of the Banach space B� to the null space N.X.t0// of the operator X.t0/;
z� is an arbitrary element of the Banach space of sequences B�; and X�1r .t0/ is the right inverse of the matrix
operator X.t0/:

Substituting (11) into (9), we obtain the general solution of the Cauchy problem (4), (5):

z.t/ D X.t/fPN.X.t0//z� CX
�1
r .t0/Œz0 � .L

�'/.t0/�g C .L
�'/.t/

D X0.t/z� CG0.t/CX.t/X
�1
r .t0/z0; (12)

where X0.t/ D X.t/PN.X.t0// is the resolving operator [3] of the homogeneous problem .'.t/ D 0; z0 D 0/;

z� is an arbitrary vector from the Banach space B�; and

G0.t/ D .L
�'/.t/ �X.t/X�1r .t0/.L

�'/.t0/: (13)

Definition 3. Operator (13) is called the Green operator of the semihomogeneous .z0 D 0/ Cauchy problem
(4), (5).

Thus, the following theorem is proved:

Theorem 1. Let L 2 GI.l1.I;B1/; l1.I;B2// and let the spaces l1.I;B1/ and l1.I;B2/ have bases.
The Cauchy problem (3), (4) is solvable for those and only those '.t/ 2 l1.I;B2/ that satisfy condition (6) with
any z0 D z.t0/; t0 2 I; and its general solution can be represented in the form

z.t/ D X0.t/z� CG0.t/CX.t/X
�1
r .t0/z0:

Remark 1. If the operator equation (2) is everywhere solvable, then PYL
� 0: In this case, the operator L

has the bounded right inverse L�1r [5]. If, in addition, the matrix operator X.t/ is invertible for any t 2 I; then
PN.X.t0// D 0 and the Cauchy problem (4), (5) is everywhere solvable and has solutions of the form

z.t/ D X.t/X�1.t0/z0 C .L
�1
r '/.t/ �X.t/X�1.t0/.L

�1
r '/.t0/: (14)
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Remark 2. If L is the differential operator .Lz/.t/ D z0.t/ � A.t/z.t/ acting in the Banach space
C.ŒaI b�;B/ of functions continuous on ŒaI b�; then the right inverse L�1r is an integral operator and relation
(14) takes the form [3, p. 148]

z.t/ D U.t; t0/z0 C

tZ
t0

U.t; �/'.�/d�;

where U.t; �/ D U.t/U�1.�/ is the evolution (resolving) operator.

Main Result

Infinite-Dimensional Normally Solvable Boundary-Value Problems. Consider the linear inhomogeneous
boundary-value problem (2), (3).

As shown above, Eq. (2) is solvable under condition (6), and its general solution has the form (9).
Substituting (9) into the boundary condition (3), we obtain the following matrix operator equation for the

element Oz0 2 B� :

Q Oz0 D ˛ � `.L
�'/.�/; (15)

where Q D `X.�/WB� ! B is the matrix operator obtained by the substitution of the matrix operator X.t/
into the boundary condition. The matrix operator Q is bounded as the superposition of the bounded operators `
and X.t/:

Assume that Q is a generalized invertible operator, i.e., Q 2 GI.B�;B/: By virtue of the normal solvability
of the operator Q; Eq. (14) is solvable for those and only those ˛ and '.t/ that satisfy the condition

PYQ
f˛ � `.L�'/.�/g D 0; (16)

where PYQ
is the projector to the subspace Y � B isomorphic to the null space of the operator Q� adjoint to

the operator Q: Under condition (16), the operator equation (15) has the solution

Oz0 D PN.Q/z� CQ�f˛ � `.L�'/.�/g; (17)

where z� is an arbitrary element of the Banach space B� and Q� is the generalized inverse of the operator Q:
Substituting (17) into (9), we obtain the general solution of the boundary-value problem (2), (3) in the Banach

space with basis:

z.t/ D X.t/f.PN.Q/z�/.t/CQ�Œ˛ � `.L�'/.�/�g C .L�'/.t/

D X�.t/z� C .G'/.t/CX.t/Q
�˛; (18)

where X�.t/ D X.t/PN.Q/ is the resolving operator of the homogeneous .'.t/; ˛ D 0/ boundary-value problem
(2), (3).

Definition 4. The operator .G'/.t/ D .L�'/.t/ � X.t/Q�`.L�'/.�/ is called the generalized Green op-
erator of the semihomogeneous .˛ D 0/ boundary-value problem (2), (3).
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Thus, the following statement is true:

Theorem 2. Let L 2 GI.l1.I;B1/; l1.I;B2//; let Q 2 GI.B�;B/; and let the Banach spaces l1.I;B1/
and l1.I;B2/ have bases. Then the homogeneous .'.t/ D 0; ˛ D 0/ boundary-value problem (2), (3) has
linearly independent solutions of the form

z.t/ D X.t/PN.Q/z� D X�.t/z�;

where X�.t/ is the resolving operator of the homogeneous .'.t/ D 0; ˛ D 0/ boundary-value problem and z�
is an arbitrary element of the Banach space B�:

The inhomogeneous boundary-value problem (2), (3) is solvable for those and only those '.t/ 2 l1.I;B2/
and ˛ 2 B that satisfy the conditions

.PYL
'/.t/ D 	.t/.˚'/.�/ D 0;

PYQ
f˛ � `.L�'/.�/g D 0:

The general solution of the problem has the form

z.t/ D X�.t/z� C .G'/.t/CX.t/Q
�˛;

where .G'/.t/ is the generalized Green operator.

Remark 3. In the case where Lz.t/ D z0.t/ � A.t/z.t/ is an everywhere solvable differential operator,
boundary-value problems of the form (2), (3) were considered in [10, 11].

Remark 4. Comparing the theorem on the existence of solutions of the Cauchy problem (Theorem 1) and the
theorem on the existence of solutions of the boundary-value problem (Theorem 2), we conclude that the Cauchy
problem for an operator equation that is not everywhere solvable is a specific boundary-value problem.

The n- and d-Normally Solvable Boundary-Value Problems. Consider two special cases of the boundary-
value problem (2), (3).

1. Assume that a generalized invertible operator L is n-normal .dimN.L/ D � < 1/ and acts from the
infinite-dimensional Banach space l1.I;B1/ into the infinite-dimensional Banach space l1.I;B2/: Also assume
that a linear bounded vector functional ` acts from the Banach space l1.I;B1/ into the Banach space B: Then
the matrix operator Q is also n-normal, i.e., the codimension of the kernel N.Q/ is finite and the codimension
of the kernel N.Q/� of the adjoint matrix operator Q� is infinite.

Theorem 3. Let the operator L 2 GI.l1.I;B1/; l1.I;B2// be n-normal, letQ 2 GI.B1;B/; rankQ � �;
and let the Banach spaces l1.I;B1/ and l1.I;B2/ have bases. Then the homogeneous .'.t/ D 0; ˛ D 0/

boundary-value problem (2), (3) has an r D �� rankQ-parameter family of linearly independent solutions of the
form

z.t/ D Xr.t/cr ; cr 2 R
r ;
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where Xr.t/ D X.t/PNr .Q/ is the resolving operator of the homogeneous .'.t/ D 0; ˛ D 0/ boundary-value
problem corresponding to problem (2), (3), PNr .Q/ is the operator composed of r linearly independent columns
of the matrix projector PN.Q/; and cr is an arbitrary constant vector from the Euclidean space Rr :

The inhomogeneous boundary-value problem (2), (3) is solvable for those and only those '.t/ 2 l1.I;B2/
and ˛ 2 B that satisfy an infinite number of the linearly independent conditions

.PYL
'/.t/ D 	.t/.˚'/.�/ D 0;

PYQ
f˛ � `.L�'/.�/g D 0I

in this case, it has an r-parameter family of linearly independent solutions of the form

z.t/ D Xr.t/cr C .G'/.t/CX.t/Q
�˛;

where .G'/.t/ is the generalized Green operator of the semihomogeneous .˛ D 0/ boundary-value problem
(2), (3).

2. Assume that a generalized invertible operator L acts from the infinite-dimensional Banach space l1.I;B1/
into the infinite-dimensional Banach space l1.I;B2/; and a linear bounded vector functional ` acts from the Ba-
nach space l1.I;B1/ into the Euclidean space Rm: Then the matrix operator Q is d -normal, i.e., the dimension
of its kernel N.Q/ is finite and the dimension of the kernel N.Q�/ of the adjoint matrix operator Q� is finite
and equal to d � m:

Theorem 4. Let L 2 GI.l1.I;B1/; l1.I;B2//; let Q 2 GI.B1; Rm/; rankQ � m; and let the Banach
spaces l1.I;B1/ and l1.I;B2/ have bases. Then the homogeneous .'.t/ D 0; ˛ D 0/ boundary-value
problem (2), (3) has an infinite family of linearly independent solutions of the form

z.t/ D X�.t/z�;

where X�.t/ D X.t/PN.Q/ is the resolving operator of the homogeneous .'.t/ D 0; ˛ D 0/ boundary-value
problem corresponding to problem (2), (3) and z� is an arbitrary element of the Banach space B�:

The inhomogeneous boundary-value problem (2), (3) is solvable for those and only those '.t/ 2 l1.I;B2/
and ˛ 2 B that satisfy an infinite number of the linearly independent conditions

.PYL
'/.t/ D 	.t/.˚'/.�/ D 0

and the d D m � rankQ linearly independent conditions

PYQd
f˛ � `.L�'/.�/g D 0I

in this case, it has an infinite-dimensional family of linearly independent solutions of the form

z.t/ D X�.t/z� C .G'/.t/CX.t/Q
�˛;

where PYQd
is the d�m operator matrix composed of the complete system of d linearly independent rows of the

matrix PYQ
and .G'/.t/; is the generalized Green operator of the semihomogeneous .˛ D 0/ boundary-value

problem (2), (3).



BOUNDARY-VALUE PROBLEMS FOR LINEAR EQUATIONS WITH GENERALIZED INVERTIBLE OPERATOR 565

Following [11], we call the boundary-value problems described by Theorems 3 and 4 n-normally solvable and
d -normally solvable.

Remark 5. In the case of finite-dimensional boundary-value problems for differential systems of equations
in Banach spaces ..Lz/.t/ � z0.t/ � A.t/z.t//; problems of this type were considered in [11]. In this case, the
generalized inverse operator L� admits an integral representation, and the generalized Green operator has the
form

.G'/.t/ D

bZ
a

K.t; s/'.s/ds �X.t/Q�`

bZ
a

K.�; s/'.s/ds:

Remark 6. If the functional ` satisfies the condition [12, p. 15]

`

bZ
a

K.�; s/'.s/ds D

bZ
a

`K.�; s/'.s/ ds;

then the generalized Green operator admits the representation

.G'/.t/ D

bZ
a

G.t; s/'.s/ ds;

whose kernel

G.t; s/ D K.t; s/ �X.t/Q�`K.�; s/

is called the generalized Green matrix.

Normally Solvable Boundary-Value Problems for Noetherian Operator Equations. Consider the bound-
ary-value problem (2), (3) under the assumption that L is a linear bounded Noetherian .dim kerL D � <1 and
dim kerL� D � < 1/ operator that acts from the Banach space l1.I;B1/ into the Banach space l1.I;B2/;
`W l1.I;B1/! Rm is a linear bounded vector functional, and ˛ 2 Rm:

Consider the problem of necessary and sufficient conditions for the solvability of the linear inhomogeneous
boundary-value problem (2), (3) and the structure of the set of its solutions z.t/ 2 l1.I;B1/ .

Since the null spaces N.L/ and N.L�/ of the operator L and its adjoint L� are finite-dimensional, they are
complementable in the Banach spaces l1.I;B1/ and l1.I;B2/; respectively, and have finite-dimensional bases.
Following [5, pp. 168, 172], we construct the projectors PN.L/ and PYL

:

The Noetherian normally solvable operator equation (2) is solvable for those and only those '.t/ 2 l1.I;B2/
that satisfy the condition

.PYL
'/.t/ D 	.t/.˚'/.�/ D 0; (19)

which consists of � linearly independent conditions.
Under condition (19), the general solution of Eq. (2) has the form

z.t/ D X�.t/c� C .L
�'/.t/; (20)
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where X�.t/ is the 1� � operator matrix composed of � linearly independent basis vectors of the null space
N.L/ of the operator L; c� 2 R� is an arbitrary constant vector, and L�W l1.I;B2/ ! l1.I;B1/ is the
bounded generalized inverse of the Noetherian operator L [8, p. 53].

For solution (20) of the inhomogeneous operator equation (19) to be a solution of the boundary-value problem
(2), (3), it is necessary and sufficient that the vector c� 2 R� satisfy the algebraic system

`X�.�/c� C `.L
�'/.�/ D ˛;

which is obtained by the substitution of solution (20) into the boundary condition (3).
Let Q D lX.�/ be an m � � constant matrix, let PN.Q/WR� ! N.Q/ be a � � � projector matrix,

let PQ� WRm ! N.Q�/ be an m � m projector matrix, and let Q� be the � � m generalized inverse of the
matrix Q:

Using the algebraic equation

Qc� D ˛ � l.L
�'/; (21)

we determine the constant c� 2 R� for which solution (20) of Eq. (2), which exists under condition (19), is a
solution of the boundary-value problem (2), (3). It follows from Theorem 3.9 in [8, p. 92] that Eq. (21) is solvable
if and only if

PY
d Q
f˛ � `.L�/.�/g D 0; d D m � rankQ;

and has an r-parameter .r D � � rankQ/ family of solutions of the form

c D PNr .Q/cr CQ
�
f˛ � `.L�'/.�/g; (22)

where PY
d Q

is the d �m matrix composed of the complete system of d linearly independent rows of the pro-
jector matrix PYQ

; and PNr .Q/ is the �� r matrix composed of the complete system of r linearly independent
columns of the projector matrix PN.Q/:

Substituting (22) into (20), we obtain the general solution of the boundary-value problem (2), (3):

z.t/ D Xr.t/cr C .G'/.t/CX.t/Q
�˛:

Here, Xr.t/ D X.t/PNr .Q/ is the operator matrix whose columns are the complete system of r linearly inde-
pendent solutions of the homogeneous .'.t/ D 0; ˛ D 0/ boundary-value problem (2), (3), and GW l1.I;B2/!
ker ` � l1.I;B1/; .G'/.t/ D .L�'/.t/ �X.t/QCl.L�'/.�/; is the generalized Green operator of the semiho-
mogeneous .˛ D 0/ boundary-value problem (2), (3).

The following statement is true:

Theorem 5. If rankQ � min.m;�/; then the homogenous .'.t/ D 0; ˛ D 0/ boundary-value problem
(2), (3) has r and only r .r D � � rankQ/ linearly independent solutions

z.t/ D Xr.t/cr ; cr 2 R
r :

The inhomogeneous boundary-value problem (2), (3) with Noetherian operator LW l1.I;B1/ ! l1.I;B2/
is solvable for those and only those '.t/ 2 l1.I;B2/ and ˛ 2 Rm that satisfy the � C d linearly independent
conditions
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.PYL
'/.t/ D 0;

PY
d Q
f˛ � `.L�'/.�/g D 0; d D m � rankQI

(23)

in this case, it has the r-parameter family of linearly independent solutions

z.t/ D Xr.t/cr C .G'/.t/CX.t/Q
C˛: (24)

Now consider the boundary-value problem (2), (3) under the assumption that the operator equation (2) is
everywhere solvable. This implies that R.L/ D l1.I;B2/; and, hence, PYL

� 0: According to Corollary 2 of
Theorem 2.3 in [8, p. 55], the operator equation .Lz/.t/ D '.t/ is solvable for any '.t/ 2 l1.I;B2/ and has the
solution

z.t/ D X�.t/c� C .L
�1
r '/.t/; c� 2 R

�; (25)

where L�1r is the linear bounded right inverse operator.
Since the equation .Lz/.t/ D '.t/ is everywhere solvable, Theorem 5 is simplified and can be reformulated

as follows:

Theorem 6. If rankQ � min.m;�/; then the homogeneous .'.t/ D 0; ˛ D 0/ boundary-value problem
(2), (3) has r and only r .r D � � rankQ/ linearly independent solutions

z.t/ D Xr.t/cr ; cr 2 R
r :

The inhomogeneous boundary-value problem (2), (3) for the everywhere solvable operator equation Lz D '
is solvable for those and only those '.t/ 2 l1.I;B2/ and ˛ 2 Rm that satisfy the d linearly independent
conditions

PYQd
f˛ � `.L�1r '/.�/g D 0; d D m � rankQI

in this case, it has the r-parameter family of solutions

z.t/ D Xr.t/cr C .G'/.t/CX.t/Q
�˛;

where .G'/.t/ D .L�1r '/.t/ �X.t/Q�`.L�1r '/.�/ is the generalized Green operator.

Remark 7. If � D m and rankQ D �; then detQ ¤ 0 .PYQ
� 0 and PN.Q/ � 0/ and Q� D Q�1: In

this case, the boundary-value problem (2), (3) is not only everywhere but also uniquely solvable, and the general-
ized Green operator turns into the Green operator

.G'/.t/ D .L�1r '/.t/ �X.t/Q�1`.L�1r '/.�/:
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