Е.А. Карпенко ассистент С.П. Герман к. вет. н.

Витебская ордена "Знак Почета" Государственная академия ветеринарной медицины

ФЕРМЕНТАТИВНАЯ АКТИВНОСТЬ И СОДЕРЖАНИЕ РНК В ЛИМФОЦИТАХ БУРСЫ ФАБРИЦИУСА И СЕЛЕЗЕНКИ У ЦЫПЛЯТ СО СНИЖЕННОЙ ЖИВОЙ МАССОЙ, ВАКЦИНИРОВАННЫХ ПРОТИВ ВИРУСНЫХ БОЛЕЗНЕЙ СОВМЕСТНО С НУКЛЕВИТОМ

Применение нуклевита при комбинированной вакиинации иыплят со сниженной живой массой против БМ, НБ и ИБК стимулирует процессы пролиферации и дифференцировки в лимфоцитах бурсы Фабрициуса и селезенки. Постановка проблемы

Вакцинация птицепоголовья против вирусных болезней занимает основное место в комплексе мероприятий по их ликвидации и профилактике. В результате у бройлеров формируется иммунный ответ достаточной напряженности. Однако одновременное введение нескольких вакцинных антигенов может вызвать у молодняка патоморфологические изменения в органах иммунной системы, что выражается в снижении эффективности вакцинации, возникновении поствакцинальных осложнений и т. д.

Анализ последних исследований

Особенно актуально изучение иммуноморфогенеза у цыплят со сниженной живой массой. По литературным данным [1] морфометрические показатели органов иммунной системы суточных цыплят, полученных от кур-молодок, ниже, чем у молодняка, полученного от несушек во второй фазе продуктивного периода. Однако И.В. Котович и др., изучив активность ряда ферментов в органах суточных цыплят с различной живой массой, предположили, что у цыплят с меньшей живой массой существуют компенсаторные механизмы для повышения адаптации **УСЛОВИЯМ** окружающей среды [2].

ружающей среды [2].
В настоящее время проведено множество исследований, посвященных

применению иммуномодулирующих препаратов для снижения поствакцинальных последствий у молодняка птицы. Исследованиям влияния нуклевита на иммуноморфогенез у цыплят-бройлеров со стандартной живой массой посвящен ряд работ [4, 5], но данные о воздействии препарата на морфологическое проявление иммунных процессов у молодняка кур со сниженной живой массой, вакцинированных против болезни Марека (БМ), ньюкаслской болезни (НБ) и инфекционного бронхита кур (ИБК), отсутствуют. Поэтому, проведение исследований в этой области является актуальным и представляет большое научное и практическое значение.

Целью исследования явилось определение активности иммуноморфологических реакций у цыплят-бройлеров со сниженной живой массой, одновременно вакцинированных против БМ, НБ и ИБК без и с применением иммуномодулятора нуклевита.

Исходя из этого, были определены следующие задачи:

- 1. Изучить в сравнительном аспекте иммуноморфогенез у цыплятбройлеров с низкой живой массой при одновременной вакцинации их против БМ. НБ и ИБК.
- 2. Определить активность иммуноморфологических реакций у цыплят с низкой живой массой при одновременной вакцинации их против БМ, НБ и ИБК совместно с нуклевитом.

Объекты и методика исследований

Исследования проводились на 75 цыплятах суточного возраста кросса «Кобб-500», полученных из яиц с различной массой. Цыплята 1-й группы, полученные из стандартных яиц, имели живую массу более 40 г и были вакцинированы против БМ, НБ и ИБК. Молодняк 2-й группы с живой массой менее 40 г, полученный из маловесных яиц, иммунизировали теми же вакцинами. Вакцинацию цыплят 3-й группы с массой менее 40 г, вылупившихся из некондиционных яиц, проводили совместно с выпаиванием им иммуномодулятора нуклевита. Бройлеры 4-й группы с живой массой более 40 г, полученные из стандартных яиц, и птица 5-й группы весом менее 40 г, полученная из маловесных яиц, были интактными и служили контролем.

На 9-й день после 1-й вакцинации, на 3-й и 7-й день после 2-й вакцинации по 5 цыплят из каждой группы убивали для проведения гистохимических исследований органов иммунной системы. Органы цыплят фиксировали и уплотняли по общепринятым методикам. Гистосрезы изготавливали на санном микротоме, окрашивали галлоцианин-хромовыми квасцами по Эйнарсону для выявления содержания РНК в цитоплазме лимфоцитов бурсы Фабрициуса, а также по методу Гомори для исследования активности ферментов щелочной и кислой фосфатаз в клетках бурсы и селезенки бройлеров [3].

При гистохимическом (качественном) изучении активности неспецифических гидролаз применялся метод, основывающийся на визуальном определении интенсивности окраски гистосрезов органов. Нами предложен способ подсчета ферментативной активности и концентрации РНК

в лимфоцитах при помощи программы «Ітаде Scope М» на базе микроскопа «Оlympus BX-41» (измерительный окуляр – 10, объектив – 40) в 50 точках микрообъекта, взятых произвольно. В программе «Ітаде Scope М» заложена опция «Яркость средняя (B_{avg})», обозначающая среднюю яркость пикселов объекта. Максимальное значение этого признака (255) мы принимали за 100%. Коэффициент пропускания также выражали в процентах. Так как между активностью ферментов (количеством РНК) в клетках и интенсивностью окраски гистосрезов существует прямая зависимость, а между интенсивностью окраски и коэффициентом пропускания — обратная, то для количественного определения этих показателей использовали формулу:

$$X=100\%-\frac{K\times100}{255}$$

где: X – искомый показатель, К – коэффициент пропускания.

Результаты исследований

В результате исследований на 9-й день после 1-й иммунизации выявлено, что активность нуклеиновых кислот в лимфоцитах коркового вещества бурсы цыплят всех групп была выше, чем в клетках мозговой зоны (табл. 1). Эти показатели среди бройлеров различных групп отличались недостоверно.

На 3-й день после 2-й иммунизации при гистохимическом исследовании количественного содержания нуклеиновых кислот в лимфоцитах бурсы установлено, что с возрастом происходит недостоверное увеличение содержания РНК в лимфоцитах у всех птиц (табл. 1). Также сохранялась тенденция к усилению активности РНК в лимфоцитах коркового вещества, по сравнению с аналогичным показателем в клетках мозговой зоны узелков бурсы у цыплят. Эти показатели среди бройлеров различных групп незначительно отличались.

На 7-й день после 2-й иммунизации активность РНК в лимфоцитах узелков бурсы по сравнению с предыдущим сроком исследования увеличивалась незначительно (табл. 1). Сохранилась закономерность преобладания этого показателя в клетках коркового вещества по сравнению с мозговой зоной узелков бурсы у птицы всех групп. Достоверно высоким было численное значение активности РНК в лимфоцитах мозгового вещества узелков цыплят, иммунизированных совместно с нуклевитом (48,04 \pm 2,219%; p₁₋₃<0,05; p₃₋₅<0,01), по сравнению с остальными бройлерами.

Таблица 1. Содержание РНК (%) в лимфоцитах бурсы Фабрициуса у цыплят, М±т, р

	Группы цыплят					
Зоны лимфоидных узелков бурсы	вакциниро- ванные со стандартной живой массой	вакциниро- ванные со сниженной живой массой	вакциниро- ванные со сниженной живой массой + нуклевит	интактные со стандартной живой массой	интактные со сниженной живой массой	
	1	2	3	4	5	
	I	На 9-й день посл	е 1-й вакцинаци	И	900 -01000	
Корковая	7 49,66±4,836 p ₁₋₂ >0,05 p ₁₋₃ >0,05 p ₁₋₄ >0,05	50,44±3,952 p ₂₋₃ >0,05 p ₂₋₅ >0,05	49,20±2,238 p ₃₋₅ >0,05	51,11±2,304	51,23±2,051	
Мозговая	39,56±7,718 p ₁₋₂ >0,05 p ₁₋₃ >0,05 p ₁₋₄ >0,05	39,69±3,411 p ₂₋₃ >0,05 p ₂₋₅ >0,05	39,22±1,863 p ₃₋₅ >0,05	41,39±2,146	41,55±4,473	
]	На 3-й день посл	е 2-й вакцинаци	И	276 - A	
Корковая	52,14±3,150 p ₁₋₂ >0,05 p _{1.3} >0,05 p ₁₋₄ >0,05 p*>0,05	51,79±5,367 p ₂₋₃ >0,05 p ₂₋₅ >0,05 p*>0,05	52,17±7,287 p ₃₋₅ >0,05 p*>0,05	51,72±3,202 p*>0,05	51,48±5,459 p*>0,05	
Мозговая	42,60±2,474 p ₁₋₂ >0,05 p ₁₋₃ >0,05 p ₁₋₄ >0,05 p*>0,05	42,42±2,360 p ₂₋₃ >0,05 p ₂₋₅ >0,05 p*>0,05	43,03±6,010 p ₃₋₅ >0,05 p*>0,05	42,37±3,397 p*>0,05	42,05±2,030 p*>0,05	
		На 7-й день посл	е 2-й вакцинаци	И	,	
Корковая	54,21±3,811 p ₁₋₂ >0,05 p ₁₋₃ >0,05 p ₁₋₄ >0,05 p*>0,05	52,72±5,730 p ₂₋₃ >0,05 p ₂₋₅ >0,05 p*>0,05	54,31±4,761 p ₃₋₅ >0,05 p*>0,05	54,13±3,157 p*>0,05	52,70±2,846 p*>0,05	
Мозговая	44,62±2,254 p ₁₋₂ >0,05 p ₁₋₃ <0,05 p ₁₋₄ >0,05 p*>0,05	45,26±2,916 p ₂₋₃ >0,05 p ₂₋₅ >0,05 p*>0,05	48,04±2,219 p ₃₋₅ <0,01 p*>0,05	46,75±5,337 p*>0,05	43,49±1,174 p*>0,05	

Примечания:

р₁₋₂ — 1-я группа по сравнению со 2-й;

 $p_{1-3} - 1$ —3-я группы; $p_{1-4} - 1$ —4-я группы;

 $p_{2-3} - 2-3$ -я группы;

 $p_{2-5} - 2-5$ -я группы;

р₃₋₅ — 3-5-я группы;

р* - с предыдущим сроком исследования.

При гистохимическом исследовании определяли активность ЩФ в цитоплазме лимфоцитов бурсы. Установлена определенная закономерность изменения количества активных форм фермента в В-клетках узелков бурсы у птиц: в корковой зоне этот показатель был выше, чем в мозговой (рис. 1). У иммунизированных бройлеров отмечалось усиление ферментной активности лимфоцитов как в корковом, так и в мозговом веществе узелков по отношению к интактной птице. Аналогичная закономерность наблюдалась при сравнении этого показателя у маловесных цыплят и молодняка со стандартной живой массой. Наибольшее значение ферментной активности было у маловесных бройлеров, вакцинированных одновременно с нуклевитом, в корковой зоне $-70,44\pm4,904\%$ (p<0,005), а в мозговой $-63,39\pm6,276\%$ (p₁₋₃<0,005; p₂₋₃<0,05; p₃₋₅<0,05).

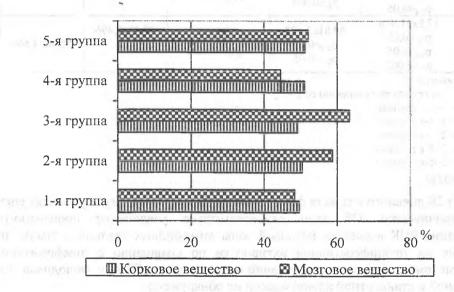


Рис. 1. Активность ЩФ в В-лимфоцитах коркового и мозгового вещества узелков бурсы Фабрициуса у цыплят на 7-й день после 2-й вакцинации

Вакцинация молодняка кур против вирусных болезней способствовала повышению активности $K\Phi$ в Т-лимфоцитах селезенки в 1,13–1,21 раза по сравнению с контрольными показателями. Достоверных различий в значениях этого показателя у опытных цыплят не выявлено (табл. 2).

Таблица 2. Активность ЩФ и КФ в лимфоцитах селезенки у цыплят на 7-й день после 2-й иммунизации, М±m, р

10	Группы цышят						
Ферменты	вакцинирован- ные со стандартной живой массой	вакцинирован- ные со сниженной живой массой	вакцинирован- ные со сниженной живой массой + нуклевит	интактные со стандартной живой массой	интактные со сниженной живой массой		
ЩФ	147,32±8,460 p ₁₋₂ <0,05 p ₁₋ <0,005 p ₁₋₄ <0,05	162,50±6,331 p ₂₋₃ <0,05 p ₂₋ <0,005	173,12±5,459 p ₃₋₅ <0,005	131,74±9,049	144,27±5,963		
КФ	57,53±1,828 p ₁₋₂ >0,05 p ₁₋₃ >0,05 p ₁ <0,005	59,81±3,628 p ₂₋₃ >0,05 p ₂₋₅ <0,05	60,57±2,321 p ₃₋₅ <0,01	47,42±2,496	52,90±3,569		

Примечания:

р₁₋₂ - 1-я группа по сравнению со 2-й;

 $p_{1-3} - 1-3$ -я группы;

 $p_{1-4} - 1-4$ -я группы;

 $p_{2-3} - 2 - 3$ -я группы;

р₂₋₅ – 2–5-я группы;

р₃₋₅ — 3-5-я группы;

Выволы

- 1. До 28-дневного возраста формирование бурсы Фабрициуса у цыплят еще не заканчивается. Об этом свидетельствует увеличение процентного содержания РНК в клетках корковой зоны лимфоидных узелков, а значит и усиление их пролиферативной активности по сравнению с лимфоцитами мозговой зоны. Достоверных отличий в содержании РНК у молодняка со сниженной и стандартной живой массой не обнаружено.
- 2. Иммунизация молодняка кур против вирусных болезней, вне зависимости от их массы стимулирует обменные процессы и дифференцировку лимфоцитов, что проявляется в усилении активности фосфатаз в клетках органов по сравнению с интактной птицей.
- 3. У иммунизированных цыплят, полученных из некондиционных яиц, активность $\mbox{Ц}\Phi$ в В-лимфоцитах мозгового вещества узелков бурсы и в селезенке превышает аналогичные показатели у цыплят-нормотрофиков, что свидетельствует об усилении интенсивности иммунных процессов, протекающих в этих органах.
- 4. Применение иммуномодулятора нуклевита при вакцинации бройлеров с некондиционной живой массой приводит к увеличению содержания РНК в лимфоцитах мозговой зоны узелков бурсы у бройлеров, а следовательно и их пролиферативной активности.

Перспективы дальнейших исследований

У полученных из маловесных яиц цыплят дальнейшие исследования иммуноморфологических реакций, возникающих в ответ на введение

№ 1 (21) т. 1 2008

вакцинных антигенов, и применения иммуномодулирующих средств для снижения их иммунодепрессивного действия может стать фактором повышения рентабельности промышленного птицеводства.

Литература

- 1. Женихова Н.И. Морфометрические изменения в иммунокомпетентных органах суточных цыплят в зависимости от возраста матерей-несушек // Актуальные вопросы ветеринарной медицины: материалы Сибир. междунар. вет. конгресса, Новосибирск, 3—4 марта 2005 г., НГАУ. Новосибирск, 2005. С. 302—304.
- 2. *Котович И.В.* Ферментные адаптации суточных цыплят-бройлеров // Птицеводство Беларуси. 2002. № 3. С. 14–16.
- Меркулов Г.А. Курс патогистологической техники. Л., 1969. 432 с.
 Паланский А.М., Рягин С.Т., Герман В.В. Повышение эффективности вакцинации цыплят-бройлеров против ньюкаслской болезни с помощью левамизола и нуклеоната натрия // Ветеринария. 1990. Вып. 65. С. 9–12.
- 5. Прудников А.В., Мацинович А.А. Влияние иммуностимулятора нуклевита на иммуногенез у цыплят, одновременно вакцинированных против болезни Марека, инфекционного бронхита и болезни Ньюкасла // Ученые записки: сб. науч. тр.: материалы научной конференции «Сельское хозяйство проблемы и перспективы» / УО «Гродненский государственный аграрный университет». Гродно, 2004. Т. 3. Ч. 3. С. 74 76.
- 6. Hearn P.J. Reading chicks from small eggs // Poultry World. 1986. Vol. 140. № 20. P. 28.