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(MIN, MAX)-EQUIVALENCE OF POSETS AND NONNEGATIVE TITS FORMS

V. M. Bondarenko1 and M. V. Stepochkina1 UDC 512.64+512.56

We study the relationship between the (min, max)-equivalence of posets and properties of their quadratic
Tits form related to nonnegative definiteness. In particular, we prove that the Tits form of a poset S
is nonnegative definite if and only if the Tits form of any poset (min, max)-equivalent to S is weakly
nonnegative.

1. Introduction

Let S be a finite poset that does not contain the element 0. The quadratic form qS : Z
S∪0 → Z of this poset

defined by the equality

qS(z) = z2
0 +

∑
i∈S

z2
i +

∑
i<j, i,j∈S

zizj − z0

∑
i∈S

zi

is called its Tits quadratic form. For the first time, this form was considered by Drozd [1], who showed that a poset
S has a finite (representation) type over a field k if and only if its Tits form is weakly positive. It was shown in
[2] that S has the tame type if and only if the Tits form is weakly nonnegative.

Positive Tits forms2 and their applications in the theory of Tits representations were investigated in many works
(see, e.g., [3–7]). The present paper is devoted to the study of posets with nonnegative Tits form.

We now recall the notion of the (min, max)-equivalence of posets [4].
For a minimal (respectively, maximal) element a ∈ S, we denote by S↑

a

(
respectively, S↓

a

)
the poset T =

T ′ ∪ {a}, where T ′ = S \ {a} in the sense of posets (in this case, T and S are equal as ordinary sets) and the
element a is already maximal (respectively, minimal); furthermore, a is comparable with x in T if and only if
a is incomparable with x in S. We write S↑↑

xy instead of (S↑
x)↑y, S↑↓

xy instead of (S↑
x)↓y, etc.

A poset T is called (min, max)-equivalent to a poset S if T is equal to a certain poset of the form

S = S
ε1ε2...εp
x1x2...xp , p ≥ 0,

where εi ∈ {↑, ↓} and xi, i ∈ {1, . . . , p}, is a minimal (respectively, maximal) element of S
ε1ε2...εi−1
x1x2...xi−1 if

εi = ↑ (
respectively, εi = ↓); for p = 0, we assume that S = S. Moreover, the condition that the elements x1,

x2, . . . , xp are different is not necessary.
In the case where all εi are equal to ↑ (

respectively, ↓), we say that the poset T is min-equivalent (respec-
tively, max-equivalent) to the poset S. According to Corollary 2 and Proposition 11 in [6], the (min, max)-, min-,
and max-equivalences are equivalence relations, and, furthermore, they are equivalent.
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Note that one can naturally extend the notion of (min, max)-equivalence to the notion of (min, max)-isomor-
phism by assuming that the posets S and S′ are (min, max)-isomorphic if there exists a poset T that is (min,
max)-equivalent to S and isomorphic to S′ ; the same is true for the min-equivalence and max-equivalence.

We now formulate the main results of the present paper.
Recall that a quadratic form f(z) = f(z1, . . . , zm) : Z

m → Z (Z is the set of all integers) is called weakly
nonnegative if it takes a nonnegative value on any vector with nonnegative coordinates. A form that takes nonneg-
ative values on all vectors is called nonnegative (see Remark 1); in this case, we write f(z) ≥ 0.

A poset S is called NP-critical (respectively, WNP-critical) if the Tits form of any proper subset of it is
nonnegative (respectively, weakly nonnegative), but the Tits form of S itself does not possess this property.

The aim of the present paper is to prove the following theorems:

Theorem 1. For an arbitrary fixed poset S, the following assertions are true:

(1) if the Tits form of any poset min-equivalent to S is weakly nonnegative, then the Tits form of S itself is
nonnegative;

(2) if the Tits form of S is nonnegative, then the Tits form of any poset min-equivalent to S is also nonnega-
tive (and, a fortiori, it is weakly nonnegative).

Theorem 2. A poset S is NP-critical if and only if it is min-equivalent to a certain WNP-2pt-critical poset.

In the conditions of Theorems 1 and 2, the min-equivalence can be replaced by the max-equivalence or by the
(min, max)-equivalence (by virtue of their equivalence indicated above), as well as by the min-, max-, or (min,
max)-isomorphism.

Note that WNP-critical posets (there are only six of them) are known (see Sec. 4). Theorem 2 gives an efficient
method for the investigation of NP -critical sets.

Analogous results for positive and weakly positive Tits forms (along with many other results) were obtained
by the authors in [6].

2. Definitions and Notation for Posets

Let T = (T0,≤) be a poset. In what follows, a subset X of the poset T is always understood as a subset
X ⊆ T0 together with the induced relation of partial order, which will be denoted by the same symbol (in this
case, for x, y ∈ X, the notation “x ≤ y in T ” is equivalent to the notation “x ≤ y in X”); one-element subsets
are identified with elements themselves. For simplicity, we write x ∈ T instead of x ∈ T0, X ⊂ T instead of
X ⊂ T0, etc. (these natural simplifications have been used in Introduction).

A subset X is called lower (respectively, upper) if x ∈ X whenever x < y (respectively, x > y) and
y ∈ X, and it is called dense if x ∈ X whenever y < x < z and y, z ∈ X. It is obvious that lower and upper

subsets are dense. Let
←
A and

→
A, where A is a subset of T, denote, respectively, the least lower subset and the

least upper subset in T that contain A. The subset
↔
A=

←
A ∩ →

A, which is the least dense subset that contains A,

is called the closure of the subset A in S.

The notation X < Y for subsets of T means that x < y for any x ∈ X and y ∈ Y. Note that Z < ∅ and
∅ < Z for any subset Z. Further, the notation x >< y means that the elements x and y are incomparable. We
set T><(a) = {x ∈ T |x >< a}. For an element a ∈ T, we denote by {a}<

(
respectively, {a}>

)
the subset of

all x ∈ T for which x < a (respectively, x > a).
The maximum number of pairwise incomparable elements of a poset T is called the width of this poset and is

denoted by w(T ).
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We say that a poset T is the sum of subsets A and B and write T = A+B if T = A∪B and A∩B = ∅.

If A < B, then this sum is called ordinal, and if x >< y for any x ∈ A and y ∈ B, then it is called direct. In the
first case, we write T = {A < B}; in the second case, we write T = A

∐
B. These definitions can naturally be

generalized to the case of an arbitrary number of subsets. A poset is called primitive if it is a direct sum of chains
(linearly ordered sets).

3. Properties of min-Equivalent Posets

The min-equivalence of posets is denoted by ∼=min (the symbol ∼= denotes an isomorphism of posets). If
T2

∼=min T1, then, by definition, T2 and T1 are equal as ordinary sets. Therefore, every subset X ⊂ T1 is also
a subset in T2, but not necessarily with the same partial order. If the order relation on X has not been changed,
then (to point out this fact) we often write X◦ instead of X

(
for X ⊂ T2

)
.

Let S be a poset. A finite sequence α = (x1, x2, . . . , xp) of elements xi ∈ S is called min-admissible if the
expression S = S↑↑...↑

x1x2...xp is meaningful (the case p = 0 is not excluded). In this case, we also write S = S↑
α.

Let P(S) denote the set of all min-admissible sequences and let P1(S) denote the set of all sequences of
this type without repetitions. Denote the subset of S that consists of all elements xi of a sequence α ∈ P1(S)
by [α]S . Note that if S and T are min-equivalent, then there does not always exist α ∈ P1(S) such that T = S↑

α

(see Sec. 6 in [6]).
According to Corollary 5 in [6], P1(S) contains a sequence α such that [α]S = X if and only if the subset

X is lower. According to Corollary 9 in [6], if α, β ∈ P1(S) and [α]S = [β]S , then S↑
α = S↑

β. Therefore, for the

lower subset X, it is natural to define a poset S↑
X by assuming that S↑

X = S↑
α, where α ∈ P1(S) is an arbitrary

sequence such that [α]S = X. It follows from Proposition 6 in [6] that, in S = S↑
X , the subset X is already upper

and, hence, Y = S \ X is lower (with the same partial orders); moreover, y < x for y ∈ Y and x ∈ X (in S )
if and only if y >< x in S. In particular, if S = X

∐
Y

(
respectively, S = {X < Y }), then S↑

X = {Y < X}(
respectively, S↑

X = X
∐

Y
)
.

We now give several statements necessary for what follows. As above, S is an arbitrary poset. Let M−(S)(
respectively, M+(S)

)
denote the set of all its minimal (respectively, maximal) elements.

Lemma 1 (lemma on cyclic permutation). Let X = R
∐{M < N} be a subset of a poset S. Then there

exist T1, T2
∼=min S in which X = M◦ ∐{N◦ < R◦} and X = N◦ ∐{R◦ < M◦}, respectively.

Indeed, as T1 and T2, we can take the poset T = S↑
Y for Y = S\ →

N and Y =
←
M, respectively.

Corollary 1. If S contains subsets A and B such that A < B, then A ∪ B = A◦ ∐
B◦ in a certain

T ∼=min S.

Indeed, one should set M = A, N = B, and R = ∅ in the conditions of the lemma.

Corollary 2. Suppose that L = L1
∐

. . .
∐

Lm is a primitive subset of S
(
L1, . . . , Lm are nonempty

chains
)

and c is an element of S such that c > Li for any i 
= m and {c}< ∩ Lm = ∅. Then there exists
T1

∼=min S that contains the primitive subset L′ = L◦
1

∐
. . .

∐
L◦

m−1

∐
L′

m, where L′
m is a chain of order

|Lm| + 1 that contains L◦
m.

Indeed, the case w(L) < 3 is trivial. For w(L) ≥ 3, one should use the lemma with M = L1 + . . .+Lm−1,

N = {c}, and R = Lm.

Lemma 2. Let L be a dense subset of S. Then there exists T∼=minS in which L is a lower subset with the
same partial order.
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Indeed, as T, we can take T = S↑
P for P = ∪x∈M−(L){x}<.

In conclusion of this section, we give one statement in the general case
(
i.e., for sequences from P(S)

)
; this

statement was proved in [6] (Lemma 26).

Proposition 1. Let α = (x1, x2, . . . , xm) ∈ P(S), let X be a subset of S, and let αX be a subsequence
of α that consists of all xi ∈ X. Then αX ∈ P(X) and X↑

αX is a subset of S↑
α.

4. Properties of a Quadratic Tits Form Related to Its Nonnegativity

According to the main result of [4], quadratic Tits forms of min-equivalent posets are equivalent. In particular,
this yields the following statement:

Proposition 2. Let S and T be min-equivalent posets. Then their Tits forms are simultaneously either
nonnegative or not.

Recall that the ordinal sum S = {A1 < A2 < . . . < As} of antichains Ai of lengths 1 and 2 (an antichain
of length m is a poset that consists of m pairwise incomparable elements) is called a semichain. This is equivalent
to the statement that w(S) < 3 and S does not contain subsets of width 2 of the form {a}∐{b < c}. The sets
Ai are called the links of a semichain. If all links are one-element, then S is a chain.

Proposition 3. If the poset S is a direct sum of two semichains, then its Tits form is nonnegative.

Proof. By virtue of Proposition 2 and the lemma on cyclic permutation for X = S and M = ∅, it suffices
to assume that S is a semichain; moreover, we can obviously assume that all its links are two-element. Thus, let
S = {A1 < A2 < . . . < As}, where Ai = {i−, i+}. It is easy to see that

2qS(z) = z2
0 +

s∑
i=1

(zi− − zi+)2 +

⎛
⎝z0 −

∑
j∈S

zj

⎞
⎠

2

,

which implies that the form qS(z) is nonnegative.
Finally, we give a statement on the nonnegativity of Tits forms for several specific posets necessary in what

follows.

Lemma 3. The quadratic Tits form is nonnegative for the following posets:

S1 =
{
1 ≺ 5, 2 ≺ 6, 3 ≺ 7, 4 ≺ 8, 1 ≺ 6, 2 ≺ 7, 3 ≺ 8, 4 ≺ 5

}
,

S2 =
{
2 ≺ 5, 3 ≺ 6, 4 ≺ 7, 2 ≺ 6, 3 ≺ 7, 4 ≺ 5

}
,

S3 =
{
2 ≺ 5, 3 ≺ 6, 4 ≺ 7, 1 ≺ 5, 1 ≺ 6, 1 ≺ 7

}
,

S4 =
{
2 ≺ 4, 5 ≺ 6 ≺ 7 ≺ 8 ≺ 9, 3 ≺ 4, 3 ≺ 6

}
,

S5 =
{
2 ≺ 5 ≺ 6, 4 ≺ 7 ≺ 8, 3 ≺ 5, 3 ≺ 7

}
,
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S6 =
{
1 ≺ 4, 2 ≺ 5, 6 ≺ 7 ≺ 8 ≺ 9, 2 ≺ 4, 3 ≺ 5, 3 ≺ 7

}
,

S7 =
{
1 ≺ 3, 2 ≺ 3, 4 ≺ 6, 5 ≺ 6, 2 ≺ 7, 4 ≺ 7, 7 ≺ 8

}
,

S8 =
{
1 ≺ 3 ≺ 4, 6 ≺ 7 ≺ 8, 2 ≺ 3, 2 ≺ 9, 5 ≺ 7, 5 ≺ 9

}
,

S9 =
{
1 ≺ 4 ≺ 7, 2 ≺ 5 ≺ 8, 3 ≺ 6 ≺ 9, 1 ≺ 8, 2 ≺ 9, 3 ≺ 7

}
,

S10 =
{
1 ≺ 2, 3 ≺ 4, 5 ≺ 6 ≺ 7 ≺ 8 ≺ 9, 3 ≺ 7

}
,

S11 =
{
1 ≺ 2, 3 ≺ 4 ≺ 5, 6 ≺ 7 ≺ 8 ≺ 9, 1 ≺ 5, 3 ≺ 8

}
,

S12 =
{
1 ≺ 2, 3 ≺ 4 ≺ 5 ≺ 6, 7 ≺ 8 ≺ 9, 1 ≺ 5, 3 ≺ 9

}
,

S13 =
{
1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6, 7 ≺ 8 ≺ 9, 5 ≺ 8

}
,

S14 =
{
2 ≺ 3 ≺ 4, 5 ≺ 6 ≺ 7 ≺ 8 ≺ 9, 2 ≺ 8

}
.

It is assumed in the conditions of the lemma that each of the sets Si consists of the elements 1, 2, . . . , s,

where s is the maximal number contained in its definition in explicit form.
The nonnegativity of the quadratic Tits form for the indicated posets was proved in [8] (see Lemma 4.3).

5. WNP-Critical Posets

Let 〈p〉 denote the chain 1 < 2 < . . . < p and let 〈p, q, . . . , r〉 denote the direct sum of the chains 〈p〉,
〈q〉, . . . , 〈r〉. We set N = {1 ≺ 2, 3 ≺ 4, 1 ≺ 4}.

Proposition 4. A poset is WNP-critical if and only if it is isomorphic to one of the following posets: N1 =
〈1, 1, 1, 1, 1〉, N2 = 〈1, 1, 1, 2〉, N3 = 〈2, 2, 3〉, N4 = 〈1, 3, 4〉, N5 = 〈1, 2, 6〉, and N6 = N

∐〈5〉.
Proof. It follows from Theorem A in [2] and Proposition 3 in [1] that, first, any poset with not weakly

nonnegative Tits form contains a certain Ni as a subset and, second, any proper subset of each Ni has a weakly
nonnegative Tits form. In the proof of Theorem B in [2], it was shown that the Tits form of each Ni is not weakly
nonnegative. These three facts imply that the proposition is true.

For the first time, the posets N1 –N6 were introduced in Nazarova’s work [9] devoted to the description of
tame posets, and, therefore, we call them Nazarova critical sets. Their subsets K1 = 〈1, 1, 1, 1〉, K2 = 〈2, 2, 2〉,
K3 = 〈1, 3, 3〉, K4 = 〈1, 2, 5〉, and K5 = N

∐〈4〉 are called Kleiner critical sets; they were introduced in [10]
and play the same role as the Nazarova sets, but in the description of posets of finite type.

In the case where P is a given poset
(
say, P = Ki or P = Ni

)
, we say that a poset T contains P if T

contains X isomorphic to P ; if, in addition, T = P, then we say that T is of the form P.

The statements presented below follow directly from definitions.

Lemma 4. The closure of a nondense subset of the form Ki contains a certain Nj .
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Lemma 5. If a primitive poset T contains a certain Ki as a proper subset, then it contains a certain Nj .

Using the last lemma and Corollaries 1 and 2, we obtain the following statement:

Lemma 6. If a poset S contains a certain primitive K = Ki and x ∈ S is an element such that K ′ =
K ∩ {x}< has the width w ≥ w(S) − 1 and is selected as a direct summand from K (in particular, coincides
with K), then there exists T ∼=min S that contains a certain Nj .

One can obtain this statement by using Corollary 1 with A = K and B = x if w(K ′) = w(S) (taking into
account that K ′ = K in this case) and Corollary 2 with L = K and Lm = K \ K ′ if w(K ′) = w(S) − 1 and
then applying Lemma 5.

We now prove the following statement:

Proposition 5. Any WNP-critical poset is NP-critical.

Proof. By definition, the Tits form of a WNP-critical set is not nonnegative. Further, using Proposition 4, one
can easily show that any maximal subset M of every WNP-critical set is either a subset (not necessarily proper)
of a certain Kleiner critical set or a direct sum of two semichains the total number of two-element links of which
does not exceed 1. In the first case, the Tits form of the set M is nonnegative by virtue of Lemma 4.3 in [8]. In
the second case, this statement is true by virtue of Proposition 3 (according to Proposition 21 in [6], the Tits form
is positive in this case).

6. Theorem on Posets without WNP-Critical Subsets

Consider posets such that any posets min-equivalent to them do not contain Nazarova critical sets. Denote the
collection of all these posets by F .

The key role in the proof of Theorems 1 and 2 is played by the following statement:

Theorem 3. The Tits form of a set S ∈ F is nonnegative.

Note that it suffices to prove Theorem 3 for any fixed poset min-equivalent to S. We use this fact in what
follows, choosing the most suitable poset in each individual case.

We now pass to the proof of Theorem 3. It is obvious that w(S) ≤ 4
(
otherwise S ⊃ N1

)
. If any poset

T ∼=min S does not contain Kleiner critical sets, then, according to Proposition 24 in [6], the Tits form of the poset
S is positive. For this reason, we assume that S contains at least one K ∼= Ki, 1 ≤ i ≤ 5, and, furthermore,
S 
= K because, by virtue of Lemma 3, the posets Ki have nonnegative Tits forms.

First, we consider the case where K ∼= K1.

By virtue of Lemma 2 for L = K1, we can assume that K = M−(S). Let K = {a1, a2, a3, a4}. Denote
the subset {ai}> ∩ {aj}> by Lij . In what follows, since Lji = Lij , considering these sets we always assume,
for convenience, that i < j. Since w(S) = 4 and S 
⊇ N2, the union of all L̂ij = Lij ∪ {ai, aj} is equal to
S. Furthermore, by virtue of Lemma 6, the subsets Lij and Lpq do not intersect for (i, j) 
= (p, q). Then each
Lij is a semichain (possibly empty) because otherwise K ∪ Lij contains N1 or N2, depending on whether Lij

contains the subset X ∼= 〈1, 1, 1〉 or Y ∼= 〈1, 2〉.
If only one of the semichains Lij (of width 1 or 2) is nonempty or only two semichains Lij and Lpq are

nonempty for {i, j} ∩ {p, q} = ∅ , then S is a direct sum of two semichains, and, by virtue of Proposition 3, we
have qS(z) ≥ 0. This is also true for the case where there exists at least one Lij that is a semichain of width 2;
indeed, in this case, each Lpq is empty for |{i, j} ∩ {p, q}| = 1 because otherwise a subset that consists of two
incomparable elements a, b ∈ Lij , any element c ∈ Lpq, and elements of the subset K \ {ai, aj} (of order 2) is
of the form N2.
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Thus, for K ∼= K1, it remains to consider the case where each Lij is a chain (possibly empty) and, further-
more, all Lij are pairwise disjoint and there exist Lpq, Lrs 
= ∅ such that |{p, q}∩{r, s}| = 1. We set lij = |Lij |
and denote the number of nonempty Lij by m = m(S).

Assume that, in this case, one of the following conditions is satisfied:

(a) m = 4;

(b) m = 3 and, for (pairwise different and nonempty) Lij , Lpq, and Lrs, one has

∣∣{i, j} ∩ {p, q}∣∣ = 1,
∣∣{p, q} ∩ {r, s}∣∣ = 1,

∣∣{i, j} ∩ {r, s}∣∣ = 1,
∣∣{i, j} ∩ {p, q} ∩ {r, s}∣∣ = 0;

(c) m = 3 and, for (pairwise different and nonempty) Lij , Lpq, and Lrs, one has

∣∣{i, j} ∩ {p, q} ∩ {r, s}∣∣ = 1.

Then (up to renumbering of minimal elements) one of the following cases takes place:

(1.1) l12 = l23 = l34 = l14 = 1;

(1.2) l12 ≥ 1, l23 ≥ 1, l34 ≥ 1, and l14 > 1;

(2.1) l12 = l23 = l13 = 1;

(2.2) l12 ≥ 1, l23 ≥ 1, and l13 > 1;

(3.1) l12 = l13 = l14 = 1;

(3.2) l12 ≥ 1, l13 ≥ 1, and l14 > 1.

Here, cases (1.1) and (1.2) correspond to condition (a), cases (2.1) and (2.2) correspond to condition (b), and
cases (3.1) and (3.2) correspond to condition (c). Note that lij not mentioned here are assumed to be zero.3

If none of conditions (a)–(c) is satisfied, then, up to renumbering of minimal elements, one has either m = 2
and L23, L34 
= ∅ or m = 3 and L12, L23, L34 
= ∅. In these cases, we set l = (l23, l34) and l = (l12, l23, l34),
respectively, and assume (for special posets) that several coordinates of the vector l can be defined not by a certain
number but by inequalities of the form > z and ≥ z, where z is a certain natural number, and by more usual
inequalities of the form z1 ≤ s ≤ z2. It is easy to see that, in this situation, one of the following cases takes place:

(4.1) l = (1, 1 ≤ s ≤ 4);

(4.2) l = (1, > 4);

(5.1) l = (2, 2);

(5.2) l = (≥ 2, > 2);

(6.1) l = (1, 1, 1 ≤ s ≤ 3);

(6.2) l = (1, 1, > 3);

3 This assumption is also used in the investigation of the case K ∼= Ki for i > 1.
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(7.1) l = (1, 2, 1);

(7.2) l = (1, > 2, 1);

(8.1) l = (2, 1, 2);

(8.2) l = (≥ 2, 1, > 2);

(9) l = (≥ 1, > 1, > 1).

Let us analyze cases (1.1)–(9).
In cases (i.1), i = 1, 2, . . . , 8, the poset S is contained, up to an isomorphism, in Si (see Lemma 3). In

cases (1.2) and (2.2), S contains N2; in cases (3.2), (7.2), and (9), it contains N3; in cases (5.2) and (8.2), it
contains N4; in case (4.2), it contains N5; and in case (6.2), it contains N6. With regard for Lemma 3, this
implies that if S ∈ F , then its Tits form is nonnegative.

Now let K ∼= Ki for i > 1. We assume that none of T ∼=min S contains K1 because the case K ∼= K1

has already been considered. Then, according to Corollary 1, the poset T does not contain subsets of the form
Q13 = {R1 < R3}, Q31 = {R3 < R1}, and Q22 = {R2 < R′

2}, where R1
∼= 〈1〉 is a set that consists of a

single element u0, R2
∼= 〈1, 1〉 (

respectively, R′
2
∼= 〈1, 1〉) is a set that consists of two incomparable elements

u1 and u2

(
respectively, u′

1 and u′
2

)
, and R3

∼= 〈1, 1, 1〉 is a set that consists of three pairwise incomparable
elements v1, v2, and v3.

Further, according to Lemma 4, the subset K is dense. Then, by virtue of Lemma 2 for L = Ki, we can
assume that K is a lower subset of S. In particular, this yields M−(K) = M−(S). We set M−(K) = {a1, a2, a3}
and M+(K) = {b1, b2, b3} and assume that a1 ≤ b1, a2 < b2, and a3 < b3.

First, we consider the case K ∼= Ki for i 
= 5.

We set Bij = {bi}> ∩ {bj}> and Lij = {ai}> ∩ {bj}> (considering them only for i 
= j); we also
set Ci = {bi}< ∪ bi. According to Lemma 5, K is a maximal primitive subset both in S itself and in every
T ∼=min S in which K ∼= Ki. Then, by virtue of Lemma 6, we have Bij = ∅, and, hence, S \ K is the union
of all subsets Lij

(
otherwise S contains K1

)
, which are pairwise disjoint

(
otherwise S ⊃ Q31

)
. Furthermore,

if Lij is nonempty, then Lis for j 
= s and Lji are empty (otherwise S ⊃ Q13 and S ⊃ Q22, respectively). It
follows from the relations Bij = ∅ and w(S) = 3 that Lij is a chain.

As in the case K ∼= K1, we denote the number of nonempty Lij by m = m(S) and set lij = |Lij |.
First, let K ∼= K2. If m = 3, then, up to rearrangement of the numbers 1, 2, and 3 in subscripts, we get

one of the following cases:

(10.1) l12 = l23 = l31 = 1;

(10.2) l12 ≥ 1, l23 ≥ 1, and l31 > 1.

If m = 1, 2, then one of the following cases (in which all lij that are not mentioned are zero) takes place:

(11.1) 1 ≤ l12 ≤ 3;

(11.2) l12 > 3;

(12.1) l12 = 1 and l23 = 2;

(12.2) l12 ≥ 1 and l23 > 2;

(13.1) l12 = 2 and l23 = 1;

(13.2) l12 > 2 and l23 ≥ 1.
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Now let us analyze cases (10.1)–(13.2).
In cases (i.1), i = 10, . . . , 13, the poset S is contained, up to an isomorphism, in Si−1 (see Lemma 3). In

cases (10.2), (11.2), (12.2), and (13.2), S is contained in N3, N5, N6, and N4, respectively. With regard for
Lemma 3, this implies that if S ∈ F , then its Tits form is nonnegative.

Now let K ∼= K3. In this case, we can assume that T ∼=min S does not contain K2 because the case
K ∼= K2 has already been considered. According to the notation introduced above, M−(K) = {a1, a2, a3} and
M+(K) = {b1, b2, b3}, where a1 = b1, a2 < b2, and a3 < b3. Let c2 and c3 denote the “missing” elements of
the subset K : a2 < c2 < b2 and a3 < c3 < b3.

Note that the set Kij = {ci}> ∩ {bj}> is empty if i 
= j and i, j 
= 1 because otherwise, according to
Corollary 2, for L = L1

∐
L2

∐
L3, L1 = {ai, ci}, L2 = {aj , cj , bj}, and L3 = {a1}, a certain T1

∼=min S

contains N3. Further, Li1, i = 2, 3, coincides with Ki1, otherwise K ∪ (Li1 \ Ki1) contains N3. In this
situation, if Li1 
= ∅, then m = 1 because, in the case where Lij 
= ∅, j 
= 1, the subset K ∪ Li1 ∪ Lij

contains Q13, and in the case where Lji 
= ∅, j 
= 1, it contains K2.

Therefore, up to rearrangement of the numbers 2 and 3 in subscripts, one of the following cases takes place:

(14.1) l21 ≤ 2;

(14.2) l21 > 2;

(15.1) l23 ≤ 2;

(15.2) l23 > 2.

In cases (14.1) and (15.1), the poset S, up to an isomorphism, is contained in S13 and S14, respectively (see
Lemma 3). In cases (14.2) and (15.2), S contains N4 and N5, respectively. Thus, for S ∈ F , its Tits form is
nonnegative.

We now show that, in the case K ∼= K4, there exists T ∼=min S that contains K2 or K3 (the corresponding
cases have already been considered). According to the notation introduced above, we have M−(K) = {a1, a2, a3}
and M+(K) = {b1, b2, b3}, where a1 = b1, a2 < b2, and a3 < b3. Let c3, d3, and e3 denote the “missing”
elements of the subset K : a3 < c3 < d3 < e3 < b3.

The subset L23 is empty because otherwise, if f denotes the maximal element of L23, then S↑
P with P =

S \ f contains N6

(
more exactly, K ∪ f is of the form N6

)
. If L32 
= ∅ and g ∈ L32, then g > c3 because

otherwise the subset (K \ a3) ∪ g is of the form N4; then, according to Corollary 2 for L = L1
∐

L2
∐

L3,

L1 = {a3, c3}, L2 = C2, and L3 = a1, there exists T1
∼=min S in which K∪ g is of the form K2. If L31 
= ∅

and h ∈ L31, then h > d3 because otherwise (K\{a3, c3}∪h is of the form N3. Then, according to Corollary 2
for L = L1

∐
L2

∐
L3, L1 = C1, L2 = {a3, c3, d3}, and L3 = C2, there exists T1

∼=min S in which K ∪ h is
of the form K3. Finally, if L21 
= ∅ and t ∈ L21, then K ∪ t is of the form N6.

It remains to consider the case where K ∼= K5.

Let U denote the subset of K that consists of the elements a1, b1, a2, and b2 and, furthermore, let
a1 < b2. Denote the “missing” elements of K by c3 and d3, assuming that c3 < d3. Then K = U

∐
C3, where

C3 = {a3 < c3 < d3 < b3}. We set C1 = {a1, b1} and C2 = {a2, b2}.
We need a statement that concretizes Corollary 2 (in the generality required for our purposes) and obviously

follows from its proof.

Corollary 3. Suppose that S, L = L1
∐

. . .
∐

Lm, and c are the same as in the conditions of Corollary 2,
m = 3, |L1| = i, |L2| = j, |L3| = max(i, j) − 1, i ≤ j, and i + j = 4. Then there exists T1

∼=min S that
contains Kj .
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Let us show that the case K ∼= K5 reduces to the considered cases K ∼= K2 and K ∼= K3, namely, that there
exists T ∼=min S that contains K2 or K3.

We now assume that this is not true, i.e., that every poset T min-equivalent to S contains neither K2 nor K3,

and show that this leads to a contradiction.
First, we show that S is decomposable (with respect to the direct sum defined above). Assume that this is

not true. Then there exists x such that {x}< ∩ U 
= ∅ and {x}< ∩ C3 
= ∅. Therefore, x > a3. We set
R = {x}< ∩ U. It is obvious that b2 /∈ R (otherwise K ∪ x contains Q31). For the same reason, R cannot
contain the elements a1 and a2 (respectively, b1 and a2) simultaneously. Furthermore, if a1 ∈ R, then b1 ∈ R,

otherwise K∪x contains Q13. Thus, there are only two possibilities for R : (a) R = C1 and (b) R = {a2}. Case
(a) is impossible because, for x >< c3, the subset K ∪ x contains K3, and for x > c3, by virtue of Corollary 3
for L1 = C1, L2 = {a3, c3}, L3 = {a2}, and c = x, there exists T1

∼=min S that contains K2. Case (b) is
also impossible because, for x >< b3, the subset M+(K) ∪ x is of the form K1, and for x > b3, by virtue of
Corollary 3 for L1 = a2, L2 = C3 \ b3, L3 = C1, and c = x, there exists T1

∼=min S that contains K3

(
it is

easy to see that the proof of Corollary 2 implies that there even exists T1
∼=min S that contains N4

)
.

Thus, S is decomposable into a direct sum of two proper subsets. It is clear that one of them contains U and
the other contains C3. Therefore, there exists x such that either {x}< ∩ U = ∅ and {x}< ∩ C3 
= ∅ or, vice
versa, {x}< ∩ U 
= ∅ and {x}< ∩ C3 = ∅. In the first case, for x >< b3, the subset M+(K) ∪ x is of the
form K1. For x > b3, the subset K ∪ x is of the form N6. Let us show that the second case is also impossible.
We set V = T><(x)∩U. It is easy to see that V is a subset of U of width w ≤ 1

(
otherwise K∪x contains K1

)
;

furthermore, V is an upper subset because the subset U \ V = {x}< ∩U is lower. In the case w = 1, the subset
K ∪ x also contains Q22 if V = {b2} and N4 if V = {b1} or V = C2. If V is empty, then, according to the
lemma on cyclic rearrangement

(
for M = U, N = x, and R = C3

)
, there exists T1

∼=min S in which K∪ x is
of the form N6.

Thus, we arrive at a contradiction. Therefore, there exists T ∼=min S that contains K2 or K3.

Theorem 3 is proved.

7. Proof of Theorems 1 and 2

We can now easily prove Theorems 1 and 2.
First, we prove Theorem 2. If the poset S is min-equivalent to the WNP-critical set N , then, by virtue of

Propositions 2 and 5, the Tits form qS(z) is not nonnegative. It is easy to see that Proposition 1, with regard for
Propositions 2 and 5, implies that every proper subset R ⊂ S has a nonnegative Tits form. Indeed, otherwise N
has a proper subset Q ∼=min R whose Tits form is not nonnegative, which contradicts the fact that the set N is
NP-critical. Thus, S is NP-critical.

Conversely, if S is NP-critical, then, according to Theorem 3, it is min-equivalent to a certain poset S′ that
contains a WNP-critical set N ∼= Ni. In this case, again by virtue of Propositions 1 and 2, we have S′ = N, and,
hence, S is min-equivalent to N.

We now pass to the proof of Theorem 1. Assertion (2) of the theorem follows directly from Proposition 2. If S

satisfies the condition of assertion (1), then any poset min-equivalent to S does not contain WNP-critical subsets
(by virtue of the definition of the latter). Therefore, according to Theorem 3, S has a nonnegative Tits form.
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