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The quadratic Tits form, introduced by P. Gabriel for a finite quiver, is
naturally generalized to a finite poset 0 ¢S :
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qs(Z)=ZO+ZZl' + Z Zl'Zj_ZozZl'.
ieS i<j,i,jeS ieS
In [1] it is introduced the notion of P-critical posets as posets critical with
respect to the positivity of the quadratic Tits form. So the P-critical posets are

analogs of the extended Dynkin diagrams. All such posets are classified in [1].
We study combinatorial properties of P-critical posets.

Let S be a finite poset and Sf = {(x,y) |x,yeS,x <y} CIf (x,y) € S<2 and

there is no z satisfying x <z <y, then one says that x and y are neighboring. We

s

put n, =n,(S):= and denote by n, =n,(S) the number of pairs of

neighboring elements. On the language of the Hasse diagram H(S) (that represents
S in the plane), n, is equal to the number of all its edges and n,, to the number of

all its paths, up to parallelity, going bottom-up (two path is called parallel if they
start and terminate at the same vertices). The ratio k, =k, (S) of the numbers

n,—n, and n, we call the coefficient of transitiveness of S. If n, =0 (then
n, =0), we assume k, =0.

An element of a poset T is called nodal, if it is comparable with all elements
of T. Obviously, each element of 7 is nodal iff 7 is a chain. It follows from the
results of [2] that any P-critical poset S is uniquely represented in the form

S§=8yuS; uS; where S;,Sy are chains (maybe empty), S; does not contain
nodal elements and Sy <S;<S; (X <Y means that x<y for any
xeX,yeY). Then S, =S5 USY is the set of all nodal elements of S'.
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We calculate the coefficients of transitiveness k, for each of the 75 critical

posets (see the list in [2]). All the coefficients are written up to the second decimal
place.
Theorem 1. The following holds for P-critical posets 1 — 75 :

k TN k[N &N K]~ K
0,00 | 16 | 0,61 | 31 | 0,00 46 | 063 | 61 | 042
0,50 | 17 [ 0,61 32 [033] 47 |060| 62 |0,53
0,55| 18 | 0,53 33 [029] 48 | 050 63 | 0,65
045| 19 [ 0,53 | 34 [000] 49 |057| 64 |0,59
0,67 20 [ 0,50 35 [033] 50 |050] 65 |0,42
0,61 | 21 [ 0,68 36 |058] 51 |045| 66 |036
0,57 | 22 0,64 37 |050] 52 |036] 67 |0,61
0,50 | 23 0,64 38 |038] 53 |040| 68 |0,56
0,50 | 24 | 064 39 |040| 54 |033] 69 | 046
0,73 | 25 | 064 ] 40 |040| 55 | 056 70 |0,38
0,69 26 |058] 41 |025| 56 |046| 71 | 0,30
0,69 27 |058] 42 |0,55| 57 |042] 72 | 0,53
0,70 | 28 | 0,50 43 | 068 58 |0,50| 73 | 043
0,65| 29 |047] 44 |063| 59 |036| 74 |0,38
0,671 30 [000] 45 |063] 60 | 046 75 | 0,00
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Theorem 2. Let S be a P-critical poset. Then the following conditions are
equivalent:
a) k,(S)=k,(T) for any P-critical poset T;

b) |S0| > |T0| for any P-critical poset T, and Sy or Sj is empty.
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PO KOE®ILNIEHTU TPAH3UTUBHOCTI Y. B. MHOKWH, KPUTUYHHUX BITHOCHO
JOJATHOCTI KBAJIPATUYHOI ®OPMMU TITCA

Mu 6800umo iHGapiaHm CKIHYEHHOT 4. 6. MHOJICUHU, HA3BAHUL KOoepiyieHmom
Mpan3umMueHOCmi, i 00UUCTIOEMO 11020 O 6CIX P-Kpumuunux u. 8. MHOJICUH.
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